Skip to main content
Log in

Construction of push—pull systems using β-formyl-β-nitroenamine

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The review is focused on the application of β-formyl-β-nitroenamines, one of the push—pull alkenes, having the biased electron density as well as an electrophilic formyl group and a nucleophilic amino group in the organic synthesis. Due to the multi-functionality, β-formyl-β-nitroenamines exhibit versatile reactivity to facilitate the synthesis of polyfunctionalized compounds possessing push—pull property. Nitroenamines serve as a synthetic equivalent of unstable nitromalonaldehyde to afford nitropyrazoles, nitropyrimidines, nitrodiazepines, and nitrophenoles upon treatment with dinucleophiles such as hydrazines, amidines, 1,2-diamines, and ketones, respectively. When active methylene compounds allowed reacting with the nitroenamines, polyfunctionalized pyridones and 2-amino-5-nitropyridines are obtained. In addition, nitroenamines undergo [4+2] self-condensation to afford 3,5-dinitropyridinium ion, which is easily trapped by benzene derivatives leading to 4-arylated 1,4-dihydropyridines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. G. Tasaganva, R. V. Doddamani, S. R. Inamdar, M. Y. Kariduraganavar, Optik, 2015, 126, 4991

    Article  CAS  Google Scholar 

  2. N. Krausse, H. Butenschoen, Eur. J. Org. Chem., 2014, 6686

    Google Scholar 

  3. M. K. Lee, J. Williams, R. J. Twieg, J. Rao, W. E. Moerner, Chem. Sci., 2013, 4, 220

    Article  CAS  Google Scholar 

  4. I. Kikas, B. Carlotti, I. Skoric, M. Sindler-Kulyk, U. Mazzucato, A. Spalletti, J. Photochem. Photobiol., A, 2012, 244, 38

    Article  CAS  Google Scholar 

  5. A. Bolduc, Y. Dong, A. Guerin, W. G. Skene, Phys. Chem. Chem. Phys., 2012, 14, 6946

    Article  CAS  Google Scholar 

  6. J. He, S. M. Mathew, S. D. Cornett, S. C. Grundy, C. S. Hartley, Org. Biomol. Chem., 2012, 10, 3398

    Article  CAS  Google Scholar 

  7. J. Rotzler, D. Vonlanthen, A. Barsella, A. Boeglin, A. Fort, M. Mayor, Eur. J. Org. Chem., 2009, 1241

    Google Scholar 

  8. M. Ronchi, M. Pizzotti, A. Orbelli Biroli, S. Righetto, R. Ugo, P. Mussini, M. Cavazzini, E. Lucenti, M. Salsa, P. Fantucci, J. Phys. Chem. C, 2009, 113, 2745.

    Article  CAS  Google Scholar 

  9. N. Nishiwaki, Y. Tohda, M. Ariga, Bull. Chem. Soc. Jpn., 1996, 69, 1997.

    Article  CAS  Google Scholar 

  10. C. Shimokawa, S. Yokota, Y. Tachi, N. Nishiwaki, M. Ariga, S. Itoh, Inorg. Chem., 2003, 42, 8395.

    Article  CAS  Google Scholar 

  11. N. Nishiwaki, S. Hirao, J. Sawayama, K. Saigo, Heterocycles, 2012, 84, 115.

    Article  CAS  Google Scholar 

  12. P. E. Fanta, R. A. Stein, Chem. Rev., 1960, 60, 261.

    Article  CAS  Google Scholar 

  13. P. E. Fanta, Org. Synth., Coll. Vol. 4, Wiley, New York, 1963, p. 844.

    Google Scholar 

  14. N. Nishiwaki, T. Ogihara, T. Takami, M. Tamura, M. Ariga, J. Org. Chem., 2004, 69, 8382.

    Article  CAS  Google Scholar 

  15. A. L. Satz, T. C. Bruice, Acc. Chem. Res., 2002, 35, 86.

    Article  CAS  Google Scholar 

  16. H. J. Anderson, Can. J. Chem., 1959, 37, 2053

    Article  CAS  Google Scholar 

  17. A. Treibs, H. G. Kolm, Justus Liebigs Ann. Chem., 1958, 577, 176

    Article  Google Scholar 

  18. H. Fischer, W. Zerweck, Z. Kenntnis, Chem. Ber., 1922, 55, 1954.

    Google Scholar 

  19. Y. Nakaike, Y. Kamijo, S. Mori, M. Tamura, N. Nishiwaki, M. Ariga, J. Org. Chem., 2005, 70, 10169.

    Article  CAS  Google Scholar 

  20. Y. Nakaike, D. Hayashi, N. Nishiwaki, Y. Tobe, M. Ariga, Org. Biomol. Chem., 2009, 7, 325.

    Article  CAS  Google Scholar 

  21. Y. Nakaike, N. Taba, S. Itoh, Y. Tobe, N. Nishiwaki, M. Ariga, Bull. Chem. Soc. Jpn., 2007, 80, 2413.

    Article  CAS  Google Scholar 

  22. O. N. Chupakhin, V. L. Rusinov, A. A. Tumashov, E. O. Sidorov, I. V. Karpin, Tetrahedron Lett., 1992, 33, 3695

    Article  CAS  Google Scholar 

  23. M. Wahren, Z. Chem., 1969, 9, 241

    Article  CAS  Google Scholar 

  24. D. J. Brown, J. S. Harper, J. Chem. Soc., 1965, 5542

    Google Scholar 

  25. M. Wahren, Z. Chem., 1966, 6, 181.

    Article  CAS  Google Scholar 

  26. G. Kaupp, M. R. Naimi-Jamal, J. Schmeyers, Tetrahedron, 2003, 59, 3753

    Article  CAS  Google Scholar 

  27. D. F. Perepichka, M. R. Bryce, A. S. Batsanov, E. J. L. McInnes, J. P. Zhao, R. D. Farley, Chem. Eur. J., 2002, 8, 4656

    Article  CAS  Google Scholar 

  28. A. J. Fatiadi, Synthesis, 1978, 165

    Google Scholar 

  29. A. J. Fatiadi, Synthesis, 1978, 241.

    Google Scholar 

  30. Y. Nakaike, N. Nishiwaki, M. Ariga, Y. Tobe, J. Org. Chem., 2014, 79, 2163.

    Article  CAS  Google Scholar 

  31. M.-L. Bennasar, T. Roca, M. Monerris, C. Juan, J. Bosch, Tetrahedron, 2002, 58, 8099

    Article  CAS  Google Scholar 

  32. S. Yamada, T. Minoso, M. Ichikawa, C. Morita, Tetrahedron, 2001, 57, 8939

    Article  CAS  Google Scholar 

  33. M.-L. Bennasar, B. Vidal, J. Bosch, J. Org. Chem., 1995, 60, 4280

    Article  CAS  Google Scholar 

  34. R. Yamaguchi, Y. Nakazono, T. Matsuki, E. Hata, M. Kawanishi, Bull. Chem. Soc. Jpn., 1987, 60, 215

    Article  CAS  Google Scholar 

  35. R. Yamaguchi, M. Moriyasu, M. Yoshioka, M. Kawanisi, J. Org. Chem., 1985, 50, 287.

    Article  CAS  Google Scholar 

  36. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley-Intersci., London, 1976, p. 34–85

    Google Scholar 

  37. Y. Ishihara, T. Tanaka, G. Goto, J. Chem. Soc., Perkin Trans. 1, 1992, 3401.

    Google Scholar 

  38. S. G. A. Moinuddin, B. Youn, D. L. Bedgar, M. A. Costa, G. L. Helms, C. Kang, L. B. Davin, N. G. Lewis, Org. Biomol. Chem., 2006, 4, 808

    Article  CAS  Google Scholar 

  39. S. Nakano, W. Sakane, H. Oinaka, Y. Fujimoto, Bioorg. Med. Chem., 2006, 14, 6404

    Article  CAS  Google Scholar 

  40. C. R. Pudney, S. Hay, M. J. Sutcliffe, N. S. Scrutton, J. Am. Chem. Soc., 2006, 128, 14053.

    Article  CAS  Google Scholar 

  41. H. Asahara, M. Hamada, Y. Nakaike, N. Nishiwaki, RSC Adv., 2015, 5, 90778.

    Article  CAS  Google Scholar 

  42. S. Lee, S. Diab, P. Queval, M. Sebban, I. Chataigner. S. R. Piettre, Chem.–Eur. J., 2013, 19, 7181.

    Article  CAS  Google Scholar 

  43. J. Šturala, S. Boháčová, J. Chudoba, R. Metelková, R. Cibulka, J. Org. Chem., 2015, 80, 2676

    Article  Google Scholar 

  44. M. Winkler, B. Cakir, W. Sander, J. Am. Chem. Soc., 2004, 126, 6135

    Article  CAS  Google Scholar 

  45. E. Plazek, Recl. Trav. Chim. Pays-Bas, 1953, 72, 569.

    Article  CAS  Google Scholar 

  46. G. P. Sagitullina, L. V. Glizdinskaya, R. S. Sagitullin, Chem. Heterocycl. Compd. (Engl. Transl.), 2005, 41, 739 [Khim. Geterotsikl. Soedin., 2005, 858].

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Nishiwaki.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2129—2142, September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakaike, Y., Asahara, H. & Nishiwaki, N. Construction of push—pull systems using β-formyl-β-nitroenamine. Russ Chem Bull 65, 2129–2142 (2016). https://doi.org/10.1007/s11172-016-1561-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-016-1561-2

Key words

Navigation