Skip to main content
Log in

The supermolecule method, as applied to studies of liquid-phase reaction mechanisms taking cyclocarbonate aminolysis in dioxane as an example: specific features

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The supermolecule method was used to describe the mechanism of liquid-phase processes taking the reaction of ethylene carbonate with methylamine as an example. Specific features of the approach are considered. The problem of choosing the reference point for calculating the relative energies of individual reaction steps was solved by introducing the idea of the structure of noninteracting solvated reactants. In this case, no basis set superposition error (BSSE) correction is required because the solvated reactants, the pre-reaction complex, and the transition state have the same atomic composition and are calculated in the same basis set. To calculate the title reaction in dioxane by the supermolecule method with acceptable accuracy, it is sufficient to consider one solvent molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ya. Simkin, I. I. Sheichet, Kvantovo-Khimicheskaya i statisticheskaya teoriya rastvorov. Vychislitelnye metody i ikh primenenie [Quantum Chemical and Statistical Theory of Solutions. Computational Methods and Their Applications], Khimiya, Moscow, 1989, 256 pp. (in Russian).

    Google Scholar 

  2. M. V. Bazilevskii, V. I. Faustov, Russ. Chem. Rev., 1992, 61, 651.

    Article  Google Scholar 

  3. Quantum Theory of Chemical Reactions, Eds R. Daudel, A. Pullman, L. Salem, A. Veillard, D. Reidel Publishing Company, Dordrecht—Boston—London, 1980, Vol. II, p. 1—24.

  4. S. Glasstone, K. J. Laidler, H. Eyring, The Theory of Rate Processes. The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, McGraw-Hill, New York—London, 1941, 611 pp.

    Google Scholar 

  5. K. J. Laidler, Reaction Kinetics, Homogeneous Gas Reactions, Pergamon Press, Oxford—London—New York—Paris, 1963, Vol. I, 242 pp.

  6. A. M. North, The Collision Theory of Chemical Reactions in Liquids, Methuen, London—New York, 1964, 145 pp.

    Google Scholar 

  7. S. G. Entelis, R. P. Tiger, Reaction Kinetics in the Liquid Phase, J. Wiley and Sons, New York—Toronto, 1976, 362 pp.

    Google Scholar 

  8. J. Frenkel, Kinetic Theory of Liquids, Clarendon Press, Oxford, 1946, 488 pp.

    Google Scholar 

  9. M. V. Zabalov, R. P. Tiger, A. A. Berlin, Dokl. Phys. Chem. (Engl. Transl.), 2011, 441, 355 [Dokl. Akad. Nauk, 2011, 441, 480].

    CAS  Google Scholar 

  10. M. V. Zabalov, R. P. Tiger, A. A. Berlin, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 518 [Izv. Akad. Nauk, Ser. Khim., 2012, 518].

    Article  CAS  Google Scholar 

  11. M. V. Zabalov, M. A. Levina, V. G. Krasheninnikov, R. P. Tiger, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 1740 [Izv. Akad. Nauk, Ser. Khim., 2014, 1740].

    Article  CAS  Google Scholar 

  12. M. A. Levina, V. G. Krasheninnikov, M. V. Zabalov, R. P. Tiger, Polym. Sci., Ser. B (Engl. Transl.), 2014, 56, 139 [Vysokomolekular. Soedineniya, Ser. B, 2014, 56, 152].

    Article  CAS  Google Scholar 

  13. J. P. Perdew, K. Burke, M. Ernzerhoff, Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  14. M. Ernzerhoff, G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029.

    Article  Google Scholar 

  15. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.

    Article  CAS  Google Scholar 

  16. D. N. Laikov, Yu. A. Ustynuk, Russ. Chem. Bull. (Int. Ed.), 2005, 54, 820 [Izv. Akad. Nauk, Ser. Khim., 2005, 804].

    Article  CAS  Google Scholar 

  17. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  18. A. A. Granovsky, Firefly version 8.0.0, wwwhttp://classic. chem.msu.su/gran/firefly/index.html.

  19. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.

    Article  CAS  Google Scholar 

  20. S. F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553.

    Article  CAS  Google Scholar 

  21. C. J. Cramer, Essentials of Computational Chemistry. Theories and Models, 2nd ed., John Wiley and Sons, Chichester, 2004, p. 196.

    Google Scholar 

  22. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, J. H. van Lenthe, Chem. Rev., 1994, 94, 1873.

    Article  Google Scholar 

  23. S. Simon, M. Duran, J. J. Dannenberg, J. Chem. Phys., 1996, 105, 11024.

    Article  CAS  Google Scholar 

  24. N. Kobko, J. J. Dannenberg, J. Phys. Chem. A, 2001, 105, 1944.

    Article  CAS  Google Scholar 

  25. A. Kaczmarek, A. J. Sadley, J. Leszczynski, J. Chem. Phys., 2004, 120, 7837.

    Article  CAS  Google Scholar 

  26. A. J. C. Varandas, Theor. Chem. Acc., 2008, 119, 544.

    Article  Google Scholar 

  27. R. M. Balabin, J. Chem. Phys., 2008, 129, 164101.

    Article  Google Scholar 

  28. E. Papajak, H. R. Leverentz, J. Zheng, D. G. Truhlar, J. Chem. Theory Comput., 2009, 5, 1197.

    Article  CAS  Google Scholar 

  29. J. R. Alvarez-Idaboy, A. Galano, Theor. Chem. Acc., 2010, 126, 75.

    Article  CAS  Google Scholar 

  30. H. Kruse, S. Grimme, J. Chem. Phys., 2012, 136, 154101.

    Article  Google Scholar 

  31. T. Schwabe, J. Phys. Chem. A, 2013, 117, 2879.

    Article  CAS  Google Scholar 

  32. L. M. Mentel, E. J. Baerends, J. Chem. Theory Comput., 2014, 10, 252.

    Article  CAS  Google Scholar 

  33. I. H. Williams, D. Spangler, D. A. Femec, G. M. Maggiora, R. L. Schowen, J. Am. Chem. Soc., 1980, 102, 6619.

    Article  CAS  Google Scholar 

  34. I. H. Williams, D. Spangler, D. A. Femec, G. M. Maggiora, R. L. Schowen, J. Am. Chem. Soc., 1983, 105, 31.

    Article  CAS  Google Scholar 

  35. E. A. Moelwyn-Hughes, The Chemical Statics and Kinetics of Solutions, Academic Press, London—New York, 1971, 530 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zabalov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0631—0639, March, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabalov, M.V., Tiger, R.P. The supermolecule method, as applied to studies of liquid-phase reaction mechanisms taking cyclocarbonate aminolysis in dioxane as an example: specific features. Russ Chem Bull 65, 631–639 (2016). https://doi.org/10.1007/s11172-016-1347-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-016-1347-6

Key words

Navigation