Skip to main content
Log in

Calculations of 29Si NMR shifts of organylsilanes by DFT taking into account solvent effects and relativistic corrections

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The accuracy of calculations of the 29Si NMR chemical shifts of organylsilanes with different hybridization of C atoms in the substituents at the Si atom (sp3, sp2, and sp) was analyzed on the basis of the effective calculation scheme in terms of the density functional theory using the KT3 functional in combination with the ?-polarization consistent basis set pcS-3. Taking into account the influence of the medium in terms of the supermolecular solvate model and relativistic effects based on the full four-component Dirac scheme made it possible to achieve the extremely high accuracy of calculations of 29Si NMR chemical shifts of organylsilanes: 1 ppm for a span of 100 ppm. The contributions of solvent, relativistic, and vibrational corrections for the 29Si NMR chemical shifts are 3, 1, and 1 ppm, respectively, and taking them into account noticeably improves the agreement of calculation results with experiment. The relativistic shielding contribution to the absolute shielding constant of the Si atom is 12—13 ppm on the average, i.e., to ca. 3% in the relative expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. A. A. Mulder, M. Filatov, Chem. Soc. Rev., 2010, 39, 578.

    Article  CAS  Google Scholar 

  2. T. Helgaker, S. Coriani, P. Jørgensen, K. Kristensen, J. Olsen, K. Ruud, Chem. Rev., 2012, 112, 543.

    Article  CAS  Google Scholar 

  3. J. Autschbach, Relativistic Effects on NMR Parameters, in High Resolution NMR Spectroscopy — Understanding Molecules and their Electronic Structures, Vol. 3, Ed. R. H. Contreras, Elsevier B. V., The Netherlands, 2013, p. 69.

  4. S. V. Fedorov, Yu. Yu. Rusakov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2014, 50, 160 [Zh. Org. Khim., 2014, 50, 172]

    Article  CAS  Google Scholar 

  5. S. V. Fedorov, Yu. Yu. Rusakov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2014, 50, 1082 [Zh. Org. Khim., 2014, 50, 1102].

    Article  CAS  Google Scholar 

  6. K. A. Chernyshev, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2012, 48, 1518 [Zh. Org. Khim., 2012, 48, 1547]

    Article  CAS  Google Scholar 

  7. K. A. Chernyshev, B. A. Gostevskii, A. I. Albanov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2013, 49, 34 [Zh. Org. Khim., 2013, 49, 44]

    Article  CAS  Google Scholar 

  8. K. A. Chernyshev, B. A. Gostevskii, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2013, 49, 832 [Zh. Org. Khim., 2013, 49, 849].

    Article  CAS  Google Scholar 

  9. K. A. Chernyshev, V. A. Semenov, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2013, 49, 379 [Zh. Org. Khim., 2013, 49, 392]

    Article  CAS  Google Scholar 

  10. V. A. Semenov, D. O. Samul´tsev, L. B. Krivdin, Russ. J. Org. Chem. (Engl. Transl.), 2014, 50, 381 [Zh. Org. Khim., 2014, 50, 392]

    Article  CAS  Google Scholar 

  11. V. A. Semenov, D. O. Samultsev, L. B. Krivdin, Magn. Reson. Chem., 2014, 52, 686

    Article  CAS  Google Scholar 

  12. D. O. Samultsev, V. A. Semenov, L. B. Krivdin, Magn. Reson. Chem., 2014, 52, 222.

    Article  CAS  Google Scholar 

  13. K. A. Chernyshev, L. I. Larina, E. A. Chirkina, L. B. Krivdin, Magn. Reson. Chem., 2012, 50, 120–127

    Article  CAS  Google Scholar 

  14. S. V. Fedorov, Yu. Yu. Rusakov, L. B. Krivdin, Magn. Reson. Chem., 2014, 52, 699.

    Article  CAS  Google Scholar 

  15. R. Ditchfield, J. Chem. Phys., 1972, 56, 5688

    Article  CAS  Google Scholar 

  16. R. Ditchfield, Mol. Phys., 1974, 27, 789

    Article  CAS  Google Scholar 

  17. J. L. Dodds, R. McWeeny, A. J. Sadlej, Mol. Phys., 1980, 41, 1419

    Article  Google Scholar 

  18. K. Wolinski, J. F. Hinton, P. Pulay, J. Am. Chem. Soc., 1990, 112, 8251.

    Article  CAS  Google Scholar 

  19. T. W. Keal, D. J. Tozer, J. Chem. Phys., 2004, 121, 5654.

    Article  CAS  Google Scholar 

  20. F. Jensen, T. Helgaker, J. Chem. Phys., 2004, 121, 3462

    Article  Google Scholar 

  21. F. Jensen, J. Chem. Theor. Comp., 2008, 4, 719.

    Article  CAS  Google Scholar 

  22. F. Jensen, J. Chem. Phys., 2001, 115, 9113.

    Article  CAS  Google Scholar 

  23. T. H. Dunning, Jr., J. Chem. Phys., 1989, 90, 1007

    Article  CAS  Google Scholar 

  24. D. E. Woon, T. H. Dunning, Jr., J. Chem. Phys., 1993, 98, 1358

    Article  CAS  Google Scholar 

  25. A. K. Wilson, D. E. Woon, K. A. Peterson, T. H. Dunning, Jr., J. Chem. Phys., 1999, 110, 7667.

    Article  CAS  Google Scholar 

  26. K. Aidas, C. Angeli, K. L. Bak, V. Bakken, R. Bast, L. Boman, O. Christiansen, R. Cimiraglia, S. Coriani, P. Dahle, E. K. Dalskov, U. Ekström, T. Enevoldsen, J. J. Eriksen, P. Ettenhuber, B. Fernández, L. Ferrighi, H. Fliegl, L. Frediani, K. Hald, A. Halkier, C. Høttig, H. Heiberg, T. Helgaker, A. C. Hennum, H. Hettema, E. Hjertenæs, S. Høst, I.-M. Høyvik, M. F. Iozzi, B. Jansik, H. J. Aa. Jensen, D. Jonsson, P. Jörgensen, J. Kauczor, S. Kirpekar, T. Kjærgaard, W. Klopper, S. Knecht, R. Kobayashi, H. Koch, J. Kongsted, A. Krapp, K. Kristensen, A. Ligabue, O. B. Lutnæs, J. I. Melo, K. V. Mikkelsen, R. H. Myhre, C. Neiss, C. B. Nielsen, P. Norman, J. Olsen, J. M. H. Olsen, A. Osted, M. J. Packer, F. Pawlowski, T. B. Pedersen, P. F. Provasi, S. Reine, Z. Rinkevicius, T. A. Ruden, K. Ruud, V. Rybkin, P. Salek, C. C. M. Samson, A. Sánchez de Merás, T. Saue, S. P. A. Sauer, B. Schimmelpfennig, K. Sneskov, A. H. Steindal, K. O. Sylvester-Hvid, P. R. Taylor, A. M. Teale, E. I. Tellgren, D. P. Tew, A. J. Thorvaldsen, L. Thøgersen, O. Vahtras, M. A. Watson, D. J. D. Wilson, M. Ziolkowski, H. Ågren, tiDALTON, a Molecular Electronic Structure Program, Release DALTON2013.1 (2013), {The Dalton Quantum Chemistry Program System, WIREs Comput. Mol. Sci.}, 2014, 4, 269–284; http://daltonprogram.org.

  27. L. Visscher, H. J. Aa. Jensen, R. Bast, T. Saue, V. Bakken, K. G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E. Faαhauer, T. Fleig, O. Fossgaard, A. S. P. Gomes, T. Helgaker, J. K. Lærdahl, Y. S. Lee, J. Henriksson, M. Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, C. V. Larsen, H. S. Nataraj, P. Norman, G. Olejniczak, J. Olsen, Y. C. Park, J. K. Pedersen, M. Pernpointner, K. Ruud, P. Sałek, B. Schimmelpfennig, J. Sikkema, A. J. Thorvaldsen, J. Thyssen, J. van Stralen, S. Villaume, O. Visser, T. Winther, S. Yamamoto, DIRAC, a Relativistic ab initio Electronic Structure Program, Release DIRAC13 (2013); http://www.diracprogram.org.

    Google Scholar 

  28. J.-M. Lévy-Leblond, Commun. Math. Phys., 1967, 6, 286.

    Article  Google Scholar 

  29. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, J. A. Montgomery, GAMESS (US), a General Atomic and Molecular Electronic Structure System, Release R.1 (2013), J. Comp. Chem., 1993, 14, 1347.

    CAS  Google Scholar 

  30. J. Tomasi, B. Mennucci, E. Cancès, THEOCHEM, 1999, 464, 211

    Article  CAS  Google Scholar 

  31. J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.

    Article  CAS  Google Scholar 

  32. A. A. Auer, J. Gauss, J. F. Stanton, J. Chem. Phys., 2003, 118, 10407.

    Article  CAS  Google Scholar 

  33. J. F. Stanton, J. Gauss, M. E. Harding, P. G. Szalay with contributions from A. A. Auer, R. J. Bartlett, U. Benedikt, C. Berger, D. E. Bernholdt, Y. J. Bomble, L. Cheng, O. Christiansen, M. Heckert, O. Heun, C. Huber, T.-C. Jagau, D. Jonsson, J. Jusélius, K. Klein, W. J. Lauderdale, D. A. Matthews, T. Metzroth, L. A. Mück, D. P. O´Neill, D. R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J. D. Watts, CFOUR, a Quantum Chemical Program Package, The Integral Packages MOLECULE (J. Almlöf, P. R. Taylor), PROPS (P. R. Taylor), ABACUS (T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, J. Olsen), and ECP routines (A. V. Mitin, C. van Wüllen); http://www.cfour.de.

  34. E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys., 1993, 99, 4597

    Article  Google Scholar 

  35. E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys., 1994, 101, 9783

    Article  Google Scholar 

  36. E. van Lenthe, A. E. Ehlers, E. J. Baerends, J. Chem. Phys., 1999, 110, 8943.

    Article  Google Scholar 

  37. C. J. Jameson, A. K. Jameson, Chem. Phys. Lett., 1988, 149, 300.

    Article  CAS  Google Scholar 

  38. J. Hahn, Z. Naturforsch., 1980, 35b, 282.

    CAS  Google Scholar 

  39. R. Löwer, M. Vongehr, H. C. Marsmann, J. Prakt. Chem., 1975, 99, 33.

    Google Scholar 

  40. G. A. Olah, R. J. Hunadi, J. Am. Chem. Soc., 1980, 102, 6989.

    Article  CAS  Google Scholar 

  41. M. Grignon-Dubois, M. Laguerre, Organometallics, 1988, 7, 1443.

    Article  CAS  Google Scholar 

  42. C. Dallaire, M. A. Brook, A. D. Bain, C. S. Frampton, J. F. Britten, Can. J. Chem., 1993, 71, 1676.

    Article  CAS  Google Scholar 

  43. H. C. Marsmann, J. Prakt. Chem., 1972, 96, 288.

    CAS  Google Scholar 

  44. H. Sakurai, Y. Kamiyama, A. Mikoda, T. Kobayashi, K. Sasaki, Y. Nakadaira, J. Organomet. Chem., 1980, 201, 14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Krivdin.

Additional information

Dedicated to Academician of the Russian Academy of Sciences V. I. Minkin on the occasion of his 80th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0551—0557, March, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, S.V., Rusakov, Y.Y. & Krivdin, L.B. Calculations of 29Si NMR shifts of organylsilanes by DFT taking into account solvent effects and relativistic corrections. Russ Chem Bull 64, 551–557 (2015). https://doi.org/10.1007/s11172-015-0899-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-015-0899-1

Key words

Navigation