Russian Chemical Bulletin

, Volume 63, Issue 3, pp 673–683 | Cite as

Binuclear copper(ii) and nickel(ii) complexes based on N,N′-bis(3-formyl-5-tert-butylsalicylidene)-1,3-diaminopropan-2-ol: physicochemical and theoretical study

  • S. I. Levchenkov
  • I. N. Shcherbakov
  • L. D. Popov
  • Yu. P. Tupolova
  • K. Yu. Suponitskii
  • M. I. Mazuritskii
  • V. A. Kogan
Full Articles

Abstract

Binuclear CuII and NiII complexes with exogenous acetate and pyrazolate bridges were synthesized and studied. It was shown that the μ2-coordination of the DMSO molecule in an acetate-bridged CuII complex leads to the inversion of the sign of the exchange interaction parameter. Quantum chemical calculations of the geometry of the complexes and the magnetic exchange parameters showed that the role of the DMSO molecule is to stabilize the “distorted” conformation of metallocycles.

Key words

Schiff bases binuclear complexes magnetochemistry exchange coupling quantum chemical calculations density functional theory broken symmetry approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Vigato, S. Tamburini, Coord. Chem. Rev., 2004, 28, 1717.CrossRefGoogle Scholar
  2. 2.
    L. D. Popov, A. N. Morozov, I. N. Shcherbakov, Yu. P. Tupolova, V. V. Lukov, V. A. Kogan, Russ. Chem. Rev., 2009, 78, 642.CrossRefGoogle Scholar
  3. 3.
    A. D. Garnovskii, A. S. Burlov, I. S. Vasil’chenko, D. A. Garnovskii, A. I. Uraev, E. V. Sennikova, Russ. J. Coord. Chem. (Engl. Transl.), 2010, 36, 81 [Koord. Khim., 2010, 36, 83].CrossRefGoogle Scholar
  4. 4.
    Yu. E. Alexeev, B. I. Kharisov, T. C. Hernandez Garcia, A. D. Garnovskii, Coord. Chem. Rev., 2010, 254, 794.CrossRefGoogle Scholar
  5. 5.
    V. I. Ovcharenko, R. Z. Sagdeev, Russ. Chem. Rev., 1999, 68, 345.CrossRefGoogle Scholar
  6. 6.
    A. S. Burlov, V. N. Ikorskii, S. A. Nikolaevskii, Yu. V. Koshchienko, V. G. Vlasenko, Ya. V. Zubavichus, A. I. Uraev, I. S. Vasil’chenko, D. A. Garnovskii, G. S. Borodkin, A. D. Garnovskii, Russ. J. Inorg. Chem. (Engl. Transl.), 2008, 53, 1566 [Zh. Neorg. Khim., 2008, 53, 1677].CrossRefGoogle Scholar
  7. 7.
    A. I. Uraev, I. S. Vasilchenko, V. N. Ikorskii, T. E. Shestakova, A. S. Burlov, K. A. Lyssenko, V. G. Vlasenko, T. A. Kuz’menko, L. N. Divaeva, I. V. Pirog, G. S. Borodkin, I. E. Uflyand, M. Yu. Antipin, V. I. Ovcharenko, A. D. Garnovskii, V. I. Minkin, Mendeleev Commun., 2005, 15, 133.CrossRefGoogle Scholar
  8. 8.
    A. G. Starikov, V. A. Kogan, V. V. Lukov, V. I. Minkin, R. M. Minyaev, Russ. J. Coord. Chem. (Engl. Transl.), 2009, 35, 616 [Koord. Khim., 2009, 35, 625].CrossRefGoogle Scholar
  9. 9.
    V. A. Kogan, S. I. Levchenkov, L. D. Popov, I. N. Shcherbakov, Russ. J. Gen. Chem. (Engl. Transl.), 2009, 79, 2767 [Ross. Khim. Zh., 2009, 53, 86].CrossRefGoogle Scholar
  10. 10.
    V. A. Kogan, V. V. Lukov, I. N. Shcherbakov, Russ. J. Coord. Chem. (Engl. Transl.), 2010, 36, 401 [Koord. Khim., 2010, 36, 403].CrossRefGoogle Scholar
  11. 11.
    O. Kahn, Acc. Chem. Res., 2000, 33, 647.CrossRefGoogle Scholar
  12. 12.
    M. N. Leuenberger, D. Loss, Nature, 2001, 410, 789.CrossRefGoogle Scholar
  13. 13.
    V. T. Kalinnikov, Yu. I. Rakitin, V. M. Novotortsev, Russ. Chem. Rev., 2003, 72, 993.CrossRefGoogle Scholar
  14. 14.
    D. Gatteschi, R. Sessoli, Angew. Chem., Int. Ed. Engl., 2003, 42, 268.CrossRefGoogle Scholar
  15. 15.
    J. Mrozinski, Coord. Chem. Rev., 2005, 249, 2534.CrossRefGoogle Scholar
  16. 16.
    S. S. Tandon, V. McKee, J. Chem. Soc., Dalton Trans., 1989, 19.Google Scholar
  17. 17.
    S. Facchin, C. C. Pagura, P. Guerriero, P. A. Vigato, Inorg. Chim. Acta, 1990, 178, 131.CrossRefGoogle Scholar
  18. 18.
    S. S. Tandon, L. K. Thompson, J. N. Bridson, V. McKee, A. J. Downard, Inorg. Chem., 1992, 31, 4635.CrossRefGoogle Scholar
  19. 19.
    Yu. P. Tupolova, L. D. Popov, S. I. Levchenkov, I. N. Shcherbakov, K. Yu. Suponitskii, A. M. Ionov, V. A. Kogan, Russ. J. Coord. Chem. (Engl. Transl.), 2011, 37, 552 [Koord. Khim., 2011, 37, 551].CrossRefGoogle Scholar
  20. 20.
    SMART and SAINT, Release 5.0, Area Detector control and Integration Software, Bruker AXS, Analytical X-Ray Instruments, Madison, Wisconsin, USA, 1998.Google Scholar
  21. 21.
    G. M. Sheldrick, SADABS: A Program for Exploiting the Redundancy of Area-Detector X-Ray Data, University of Göttingen, Göttingen, Germany, 1999.Google Scholar
  22. 22.
    G. M. Sheldrick, Acta Crystallogr., Sect. A, 2008, 64, 112.CrossRefGoogle Scholar
  23. 23.
    P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem., 1994, 98, 11623.CrossRefGoogle Scholar
  24. 24.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  25. 25.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., 1988, 37, 785.CrossRefGoogle Scholar
  26. 26.
    L. D. Popov, Yu. P. Tupolova, V. V. Lukov, I. N. Shcherbakov, A. S. Burlov, S. I. Levchenkov, V. A. Kogan, K. A. Lyssenko, E. V. Ivannikova, Inorg. Chim. Acta, 2009, 362, 1673.CrossRefGoogle Scholar
  27. 27.
    K. V. Bozhenko, S. M. Aldoshin, V. I. Minkin, A. D. Garnovskii, I. S. Vasil’chenko, A. N. Utenyshev, A. A. Khrulev, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 489 [Izv. Akad. Nauk, Ser. Khim., 2010, 479].CrossRefGoogle Scholar
  28. 28.
    A. P. Ginsberg, J. Am. Chem. Soc., 1980, 102, 111.CrossRefGoogle Scholar
  29. 29.
    L. Noodleman, C. Y. Peng, D. A. Case, J.-M. Mouesca, Coord. Chem. Rev., 1995, 144, 119.CrossRefGoogle Scholar
  30. 30.
    P. G. Lacroix, J.-C. Daran, J. Chem. Soc., Dalton Trans., 1997, 1369.Google Scholar
  31. 31.
    T. Soda, Y. Kitagawa, T. Onishi, Y. Takano, Y. Shigeta, H. Nagao, Y. Yoshioka, K. Yamaguchi, Chem. Phys. Lett., 2000, 319, 223.CrossRefGoogle Scholar
  32. 32.
    F. Neese, Coord. Chem. Rev., 2009, 253, 526.CrossRefGoogle Scholar
  33. 33.
    G. A. Zhurko, Chemcraft. Ver. 1.6; http://www.chemcraftprog.com.
  34. 34.
    Yu. P. Tupolova, I. N. Shcherbakov, L. D. Popov, S. I. Levchenkov, O. I. Askalepova, A. V. Mishchenko, V. V. Lukov, V. A. Kogan, Russ. J. Gen. Chem. (Engl. Transl.), 2010, 80, 2329 [Zh. Obshch. Khim., 2010, 80, 1866].CrossRefGoogle Scholar
  35. 35.
    Yu. N. Kukushkin, O. F. Khodzhaev, V. F. Budanova, N. A. Parpiev, Termoliz koordinatsionnykh soedinenii [Thermal Decomposition of Coordination Compounds], Fan, Tashkent, 1986, pp. 198 (in Russian).Google Scholar
  36. 36.
    Yu. Nishida, M. Takeuchi, K. Takahashi, S. Kida, Chem. Lett., 1985, 14, 631.CrossRefGoogle Scholar
  37. 37.
    Yu. Nishida, S. Kida, J. Chem. Soc., Dalton Trans., 1986, 2633.Google Scholar
  38. 38.
    V. A. Kogan, V. V. Lukov, V. M. Novotortsev, I. L. Eremenko, G. G. Aleksandrov, Russ. Chem. Bull. (Int. Ed.), 2005, 54, 600 [Izv. Akad. Nauk, Ser. Khim., 2005, 592].CrossRefGoogle Scholar
  39. 39.
    A. Elmali, C. T. Zeyrek, Y. Elerman, J. Mol. Struct., 2004, 693, 225.CrossRefGoogle Scholar
  40. 40.
    C.-J. Lee, S.-C. Cheng, H.-H. Lin, H.-H. Wei, Inorg. Chem. Commun., 2005, 8, 235.CrossRefGoogle Scholar
  41. 41.
    C.-Y. Chen, J.-W. Lu, H.-H. Wei, J. Chin. Chem. Soc., 2009, 56, 89.Google Scholar
  42. 42.
    K. Dhara, P. Roy, J. Ratha, M. Manassero, P. Banerjee, Polyhedron, 2007, 26, 4509.CrossRefGoogle Scholar
  43. 43.
    C.-H. Weng, S.-C. Cheng, H.-M. Wei, H.-H. Wei, C.-J. Lee, Inorg. Chim. Acta, 2006, 359, 2029.CrossRefGoogle Scholar
  44. 44.
    Y. Kou, J. Tian, D. Li, W. Gu, X. Liu, S. Yan, D. Liao, P. Cheng, Dalton Trans., 2009, 2374.Google Scholar
  45. 45.
    T. Kawata, S. Ohba, Y. Nishida, T. Tokii, Acta Crystallogr., Sect. C, 1993, 49, 2070.CrossRefGoogle Scholar
  46. 46.
    W. Mazurek, B. J. Kennedy, K. S. Murray, M. J. O’Connor, J. R. Rodgers, M. R. Snow, A. G. Wedd, P. R. Zwack, Inorg. Chem., 1985, 24, 3258.CrossRefGoogle Scholar
  47. 47.
    Yu. Nishida, S. Kida, Inorg. Chem., 1988, 27, 447.CrossRefGoogle Scholar
  48. 48.
    S.-F. Huang, Y.-C. Chou, P. Misra, C.-J. Lee, S. Mohanta, H.-H. Wei, Inorg. Chim. Acta, 2004, 357, 1627.CrossRefGoogle Scholar
  49. 49.
    Yu. P. Tupolova, V. A. Kogan, V. V. Lukov, L. D. Popov, I. E. Gevorkyan, V. G. Vlasenko, Transition Met. Chem., 2007, 32, 656.CrossRefGoogle Scholar
  50. 50.
    O. Kahn, Molecular Magnetism, VCH Publishers, New York, 1993, 380 pp.Google Scholar
  51. 51.
    B. Bleaney, K. D. Bowers, Proc. Roy. Soc. London, Ser. A, 1952, 214, 451.CrossRefGoogle Scholar
  52. 52.
    Yu. P. Tupolova, V. V. Lukov, V. A. Kogan, L. D. Popov, I. E. Gevorkyan, G. V. Shilov, D. D. Makitova, Russ. J. Inorg. Chem. (Engl. Transl.), 2004, 49, 1849 [Zh. Neorg. Khim., 2004, 49, 1993].Google Scholar
  53. 53.
    V. V. Lukov, V. A. Kogan, S. I. Levchenkov, L. V. Zavada, K. A. Lyssenko, O. V. Shishkin, Russ. J. Inorg. Chem. (Engl. Transl.), 1998, 43, 421 [Zh. Neorg. Khim., 1998, 43, 421].Google Scholar
  54. 54.
    A. P. Ginsberg, J. Am. Chem. Soc., 1980, 102, 111.CrossRefGoogle Scholar
  55. 55.
    L. Noodleman, C. Y. Peng, D. A. Case, J.-M. Mouesca, Coord. Chem. Rev., 1995, 144, 119.CrossRefGoogle Scholar
  56. 56.
    N. Queralt, C. de Graaf, J. Cabrero, R. Caballol, Mol. Phys., 2003, 101, 2095.CrossRefGoogle Scholar
  57. 57.
    O. Kahn, Angew. Chem., Int. Ed., 1985, 24, 834.CrossRefGoogle Scholar
  58. 58.
    P. J. Hay, J. C. Thibeault, R. Hoffmann, J. Am. Chem. Soc., 1975, 97, 4884.CrossRefGoogle Scholar
  59. 59.
    Y. Nishida, S. Kida, Inorg. Chem., 1988, 27, 447.CrossRefGoogle Scholar
  60. 60.
    R. Gupta, R. Hotchandani, R. Mukherjee, Polyhedron, 2000, 19, 1429.CrossRefGoogle Scholar
  61. 61.
    C. T. Zeyrek, A. Elmali, Y. Elerman, J. Mol. Struct. (THEOCHEM), 2004, 680, 159.CrossRefGoogle Scholar
  62. 62.
    L.-L. Wang, Y.-M. Sun, Z.-N. Qi, C.-B. Liu, J. Phys. Chem. A, 2008, 112, 8418.CrossRefGoogle Scholar
  63. 63.
    Y.-M. Sun, L.-L. Wang, J.-S. Wu, Transition Met. Chem., 2008, 33, 1035.CrossRefGoogle Scholar
  64. 64.
    I. Negodaev, C. de Graaf, R. Caballol, V. V. Lukov, Inorg. Chim. Acta, 2011, 375, 166.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. I. Levchenkov
    • 1
  • I. N. Shcherbakov
    • 2
  • L. D. Popov
    • 2
  • Yu. P. Tupolova
    • 2
  • K. Yu. Suponitskii
    • 3
  • M. I. Mazuritskii
    • 2
  • V. A. Kogan
    • 2
  1. 1.Southern Scientific Center of Russian Academy of SciencesRostov-on-DonRussian Federation
  2. 2.Department of ChemistrySouthern Federal UniversityRostov-on-DonRussian Federation
  3. 3.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations