Skip to main content
Log in

Structural parameters of alanine zwitterion hydration from the data of the integral equation method in the RISM approximation

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structural parameters of alanine zwitterion hydration in water were studied by means of the integral equation method in the framework of the 1D-RISM approximation. According to the calculations, ∼5.9 water molecules are located in the nearest environment of the COO-group, and the nearest environments of the NH3 + and CH3 groups contain ∼5.5 and ∼11.6 water molecules, respectively. The number of hydrogen bonds formed by the COO- and NH3 + groups is 4.3 and 2.4, respectively. The data obtained did not reveal hydrogen bonding of the nitrogen atom of the NH3 + group, whereas there is a possibility for hydrogen bonding of the methyl group with water molecules. No structuredness of water molecules near the CH fragment of the hydrophobic moiety was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Perutz, Protein structure: New Approaches to Disease and Therapy, W. H. Freeman & Co., New York, 1992, 326 p.

    Google Scholar 

  2. Y. Kameda, K. Sugawara, T. Usuki, O. Uemura, Bull. Chem. Soc. Jpn., 2003, 76, 935.

    Article  CAS  Google Scholar 

  3. I. M. Degtyarenko, K. J. Jalkanen, A. A. Gurtovenko, R. M. Nieminen, J. Phys. Chem., B, 2007, 111, 4227.

    Article  CAS  Google Scholar 

  4. I. M. Degtyarenko, K. J. Jalkanen, A. A. Gurtovenko, R. M. Nieminen, J. Comput. Theor. Nanosci., 2008, 5, 277.

    CAS  Google Scholar 

  5. T. Fukuyama, K. Matsuo, K. Gekko, J. Phys. Chem. A., 2005, 109, 6928.

    Article  CAS  Google Scholar 

  6. D. Chandler, H. C. Andersen, J. Chem. Phys., 1972, 57, 1930.

    Article  CAS  Google Scholar 

  7. M. V. Fedotova, M. F. Golovko, in Teoreticheskie i eksperimental’nye metody khimii rastvorov [Theoretical and Experimental Methods in Solution Chemistry], Prospekt, Moscow, 2011, p. 68 (in Russian).

    Google Scholar 

  8. J. P. Hansen, I. R. McDonald, Theory of Simple Liquids, 3rd ed., Academic Press, New York, 2006, 410 p.

    Google Scholar 

  9. C. G. Gray, K. E. Gubbins, Theory of Molecular Fluids, Clarendon Press, Oxford, 1985, 626 p.

    Google Scholar 

  10. P. A. Monson, G. P. Morris, Adv. Chem. Phys., 1990, 77, 451.

    CAS  Google Scholar 

  11. F. Hirata, Molecular Theory of Solvation, Kluwer Academic Publishers, Dordrecht, 2003, 360 p.

    Google Scholar 

  12. A. Kovalenko, F. Hirata, J. Chem. Phys., 1999, 110, 10095.

    Article  CAS  Google Scholar 

  13. A. Kovalenko, F. Hirata, J. Chem. Phys., 2000, 113, 2793.

    Article  CAS  Google Scholar 

  14. L. Lue, D. Blankschtein, J. Phys. Chem., 1992, 92, 8582.

    Article  Google Scholar 

  15. E. Bolton, Y. Wang, P. A. Thiessen, S. H. Bryant, Annual Reports in Computational Chemistry, Washington DC, 2008, 4.

    Google Scholar 

  16. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, J. Comput. Chem., 2004, 25, 1157.

    Article  CAS  Google Scholar 

  17. O. Kikuchi, T. Watanabe, Y. Ogawa, H. Takase, O. Takahashi, J. Phys. Org. Chem., 1997, 10, 145.

    Article  CAS  Google Scholar 

  18. D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz, Jr., A. Onufriev, C. Simmerling, B. Wang, R. Woods, J. Comput. Chem., 2005, 26, 1668.

    Article  CAS  Google Scholar 

  19. A. Kovalenko, S. Ten-no, F. Hirata, J. Comput. Chem., 1999, 20, 928.

    Article  CAS  Google Scholar 

  20. Yu. V. Zefirov, P. M. Zorkii, in Problemy Kristallokhimii, Nauka, Moscow, 1992, p. 6 (in Russian).

    Google Scholar 

  21. M. V. Fedotova, S. E. Kruchinin, J. Mol. Liq., 2012, 169, 1.

    Article  CAS  Google Scholar 

  22. M. V. Fedotova, S. E. Kruchinin, Russ. J. Phys. Chem. (Engl. Transl.), 2012, 86, 1830 [Zh. Fiz. Khim., 2012, 86, 1968].

    Article  CAS  Google Scholar 

  23. W. J. Dunn III, P. I. Nagy, J. Phys. Chem., 1990, 94, 2099.

    Article  CAS  Google Scholar 

  24. H. Hesske, K. Gloe, J. Phys. Chem. A., 2007, 111, 9848.

    Article  CAS  Google Scholar 

  25. M. Kawata, S. Ten-no, Sh. Kato, F. Hirata, Chem. Phys., 1996, 203, 53.

    Article  CAS  Google Scholar 

  26. M. V. Fedotova, S. E. Kruchinin, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 1 [Izv. Akad. Nauk, Ser. Khim., 2012, 240].

    Article  Google Scholar 

  27. M. Suzuki, J. Shigematsu, Y. Fukunishi, T. Kodama, J. Phys. Chem., 1997, 101, 3839.

    Article  CAS  Google Scholar 

  28. T. Steiner, Chem. Commun., 1997, 8, 727.

    Article  Google Scholar 

  29. C. Rovira, J. J. Novoa, M.-H. Whangbo, J. M. Williams, Chem. Phys., 1995, 200, 319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Fedotova.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1974–1978, September, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotova, M.V., Dmitrieva, O.A. Structural parameters of alanine zwitterion hydration from the data of the integral equation method in the RISM approximation. Russ Chem Bull 62, 1974–1978 (2013). https://doi.org/10.1007/s11172-013-0286-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-013-0286-8

Key words

Navigation