Skip to main content
Log in

Quantum chemical studies of hydrogenation of borazine and polyborazines in the presence of Lewis acids

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Thermodynamic parameters and activation energies of hydrogenation processes of borazine, polyborazines, and their donor-acceptor complexes were calculated by the B3LYP/TZVP quantum chemical method. Formation of donor-acceptor complexes of borazine and polyborazines with Lewis acids leads to a considerable decrease in endothermicity and activation energy of their hydrogenation. This allows us to recommend Lewis acids for the use as catalysts in hydrogenation of borazine and polyborazines. Hydrogenation of polyborazines primarily occurs at the heterocycle periphery. The reactivity of polyborazines toward hydrogenation decreases with their increasing size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. B. Marder, Angew. Chem., Int. Ed. Engl., 2007, 46, 8116.

    Article  CAS  Google Scholar 

  2. M. E. Bluhm, M. G. Bradley, R. Butterick III, U. Kusari, J. Am. Chem. Soc., 2006, 128, 7748.

    Article  CAS  Google Scholar 

  3. M. H. Matus, K. D. Anderson, D. M. Camaioni, S. T. Autrey, D. A. Dixon, J. Phys. Chem. A, 2007, 111, 4411.

    Article  CAS  Google Scholar 

  4. S. D. Rassat, C. L. Aardahl, T. Autrey, R. S. Smith, Energy Fuels, 2010, 24, 2596.

    Article  CAS  Google Scholar 

  5. P. J. Fazen, E. E. Remsen, J. S. Beck, P. J. Carrol, A. R. McGhie, L. G. Sneddon, Chem. Mater., 1995, 7, 1942.

    Article  CAS  Google Scholar 

  6. A. Nag, K. Raidongia, K. P. S. S. Hembram, R. Datta, U. V. Waghmare, C. N. R. Rao, ACS Nano, 2010, 4, 1539.

    Article  CAS  Google Scholar 

  7. R. W. Nutt, M. L. McKee, Inorg. Chem., 2007, 46, 7633.

    Article  CAS  Google Scholar 

  8. W. H. Fink, J. C. Richards, J. Am. Chem. Soc., 1991, 113, 3393.

    Article  CAS  Google Scholar 

  9. E. D. Jemmis, B. Kiran, Inorg. Chem., 1998, 37, 2110.

    Article  CAS  Google Scholar 

  10. Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, Chem. Rev., 2005, 105, 3842.

    Article  CAS  Google Scholar 

  11. J. E. Frey, G. M. Marchand, R. S. Bolton, Inorg. Chem., 1982, 21, 3239.

    Article  CAS  Google Scholar 

  12. R. Foster, Nature, 1962, 195, 490.

    Article  Google Scholar 

  13. E. Mellon, J. Lagowski, Nature, 1963, 199, 997.

    Article  CAS  Google Scholar 

  14. R. Prinz, H. Werner, Angew. Chem., Int. Ed. Engl., 1967, 6, 91.

    Article  CAS  Google Scholar 

  15. K. Anton, H. Fubstetter, H. Nöth, Chem. Ber., 1981, 114, 2723.

    Article  CAS  Google Scholar 

  16. K. Anton, H. Nöth, Chem. Ber., 1982, 115, 2668.

    Article  CAS  Google Scholar 

  17. B. Cemünd, B. Günther, H. Nöth, ARKIVOC, 2008, 5, 136.

    Google Scholar 

  18. A. S. Lisovenko, A. Y. Timoshkin, Inorg. Chem., 2010, 49, 10357.

    Article  CAS  Google Scholar 

  19. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.01, Gaussian, Inc., Pittsburgh (PA), 2003.

    Google Scholar 

  20. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  21. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 37, 785.

    Article  CAS  Google Scholar 

  22. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.

    Article  CAS  Google Scholar 

  23. Fizicheskie metody issledovaniya neorganicheskikh veshchestv [Physical Methods of Study of Inorganic Compounds], Ed. A. B. Nikol’skii, Akademiya, Moscow, 2006, 448 pp. (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Lisovenko.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 0892-0899, April, 2012

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisovenko, A.S., Timoshkin, A.Y. Quantum chemical studies of hydrogenation of borazine and polyborazines in the presence of Lewis acids. Russ Chem Bull 61, 897–905 (2012). https://doi.org/10.1007/s11172-012-0126-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-012-0126-2

Key words

Navigation