Skip to main content
Log in

Redox transformations of polynuclear molybdenum alkoxides and their interaction with nitrogenase substrates: experimental and theoretical study

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The experimental and theoretical study of the electronic structure and IR spectra of the CO-containing molybdenum(0) alkoxide complexes of different nuclearity was carried out. The binding energy of the dinitrogen ligand was calculated for the tetranuclear K4[Mo(OR)(CO)3]4 complexes catalyzing dinitrogen reduction. The theoretical study of structural changes for the 20-electron reduction of the catalytic cluster of the octanuclear [Mg2Mo8O22(MeO)6(MeOH)4]2− complex was performed. The interaction of the reduced cluster with the nitrogenase substrate was considered. Probable coordination modes of N2, C2H2, and CO were analyzed, as well as the protonation reactions of the acetylene complexes, giving rise to two- and four-electron reduction products. The results of quantum chemical calculations are in good agreement with the experimental regularities observed for the catalytic reduction of the substrates in the presence of the Mo-Mg cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Einsle, F. A. Tezcan, S. L. A. Andrade, B. Schmid, M. Yoshida, J. B. Howard, D. C. Rees, Science, 2002, 297, 1696.

    Article  CAS  Google Scholar 

  2. New Trends in the Chemistry of Nitrogen Fixation, Eds J. Chatt, L. M. da Camara Pina, R. L. Richards, Academic Press, London, 1980, p. 67.

    Google Scholar 

  3. T. A. Bazhenova, A. E Shilov, Coord. Chem. Rev., 1995, 114, 69.

    Article  Google Scholar 

  4. R. R. Schrock, Angew. Chem., Int. Ed., 2008, 47, 5512.

    Article  CAS  Google Scholar 

  5. M. Yu. Antipin, L. P. Didenko, L. M. Kachapina, A. E. Shilov, A. K. Shilova, Yu. T. Struchkov, J. Chem. Soc., Chem. Commun., 1989, 1467.

  6. L. P. Didenko, A. B. Gavrilov, A. K. Shilova, V. V. Strelets, V. N. Tsarev, A. E. Shilov, V. D. Makhaev, A. K. Banerjee, L. Pospisil, New J. Chem., 1986, 10, 583.

    CAS  Google Scholar 

  7. N. T. Denisov, S. I. Kobeleva, N. I. Shuvalova, Kinet. Katal., 1980, 21, 1251 [Kinet. Catal. (Engl. Transl.), 1980, 21].

    CAS  Google Scholar 

  8. T. A. Bazhenova, M. S. Ioffe, L. M. Kachapina, R. M. Lobkovskaya, R. P. Shibaeva, A. E. Shilov, A. K. Shilova, Zh. Strukt. Khim., 1978, 19, 1047 [J. Struct. Chem. USSR (Engl. Transl.), 1978, 19].

    CAS  Google Scholar 

  9. A. E. Shilov, A. K. Shilova, T. A. Vorontsova, Reaction Kinet. Catal. Lett., 1975, 3, 143.

    Article  CAS  Google Scholar 

  10. N. V. Bardina, T. A. Bazhenova, G. N. Petrova, A. K. Shilova, A. E. Shilov, Izv. Akad. Nauk, Ser. Khim., 2006, 766 [Russ. Chem. Bull., Int. Ed., 2006, 55, 793].

    Google Scholar 

  11. K. G. Caulton, L. G. Hubert-Pfalzgraf, Chem. Rev., 1990, 90, 969.

    Article  CAS  Google Scholar 

  12. C. Sosa, J. Andzelm, B. C. Elkin, E. Wimmer, K. D. Dobbs, D. A. Dixon, J. Phys. Chem., 1992, 96, 6630.

    Article  CAS  Google Scholar 

  13. N. E. Schultz, Y. Zhao, D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 4388.

    Article  CAS  Google Scholar 

  14. Y. Zhao, D. G. Truhlar, Chem. Phys., 2006, 124, 224105.

    Google Scholar 

  15. S. Li, D. A. Dixon, J. Phys. Chem. A, 2008, 112, 6646.

    Article  CAS  Google Scholar 

  16. T. A. Savinykh, A. F. Shestakov, N. V. Bardina, T. A. Bazhenova, Yu. M. Shulga, Mendeleev Commun., 2008, 1, 128.

    Article  Google Scholar 

  17. A. Beyerholm, M. Brorson, M. Minelli, L. K. Skov, Inorg. Chem., 1992, 31, 3672.

    Article  CAS  Google Scholar 

  18. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.

    Article  CAS  Google Scholar 

  19. D. N. Laikov, Ph. D. (Phys.-Math.) Thesis, Mos. Gos. Univ., Moscow, 2000, 102 pp. (in Russian).

  20. J. P. Perdew, K. Burke, M. Ernzerhov, Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  21. W. J. Stevens, H. Bash, M. Krauss, J. Chem. Phys., 1984, 81, 6026.

    Article  Google Scholar 

  22. W. J. Stevens, M. Krauss, H. Bash, P. G. Jasien, Can. J. Chem., 1992, 70, 612.

    Article  CAS  Google Scholar 

  23. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Jr. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN, Gaussian Inc., Wallingford (CT), 2004.

    Google Scholar 

  24. C. P. Kelly, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. A, 2006, 110, 2493.

    Article  CAS  Google Scholar 

  25. M. D. Tissandier, K. A. Cowen, W. Y. Feng, E. Gundlach, M. H. Cohen, A. D. Earhart, J. V. Coe, Jr., T. R. Tuttle, J. Phys. Chem. A., 1998, 102, 7787.

    Article  CAS  Google Scholar 

  26. N. V. Bardina, T. A. Bazhenova, K. A. Lyssenko, M. Y. Antipin, Y. M. Shulga, T. A. Filina, A. F. Shestakov, Mendeleev Commun., 2006, 6, 307.

    Article  Google Scholar 

  27. A. E. Shilov, Izv. Akad. Nauk, Ser. Khim., 2003, 2417 [Russ. Chem. Bull., Int. Ed., 2003, 52, 2555].

  28. A Treatise on Dinitrogen Fixation, Eds R. W. F. Hardy, F. Bottomley, R. C. Burns, John Wiley and Sons, Inc., New York, 1979, p. 37.

    Google Scholar 

  29. M. Antipin, Yu. Struchkov, A. Shilov, A. Shilova, Gaz. Chim. Ital., 1993, 123, 265.

    CAS  Google Scholar 

  30. N. T. Denisov, S. I. Kobeleva, A. F. Shestakov, Zh. Fiz. Khim., 1999, 73, 145 [Russ. J. Phys. Chem. (Engl. Transl.), 1999, 73].

    CAS  Google Scholar 

  31. M. Fryzuk, B. A. MacKay, S. A. Johnson, B. O. Patrick, Angew. Chem., 2002, 114, 3861.

    Article  Google Scholar 

  32. J. Scott, I. Vidyarante, I. Korobkov, S. Gambarotta, P. H. M. Budzelaar, Inorg. Chem., 2008, 47, 896.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. Savinykh.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 185–196, January, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savinykh, T.A., Bazhenova, T.A., Kovaleva, N.V. et al. Redox transformations of polynuclear molybdenum alkoxides and their interaction with nitrogenase substrates: experimental and theoretical study. Russ Chem Bull 61, 188–199 (2012). https://doi.org/10.1007/s11172-012-0026-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-012-0026-5

Key words

Navigation