Skip to main content
Log in

Quantum chemical simulation of silicon tetrachloride hydrogenation

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The quantum chemical calculation of the activation parameters of the reduction of a SiCl4 molecule with molecular hydrogen, atomic hydrogen, and atomic chlorine was performed. The energy parameters were determined within the scope of the density functional theory (DFT) with the complete geometry optimization by the unrestricted UB3LYP/6-311+G(d) method. The calculated activation energies allow one to exclude the participation of molecular hydrogen in processes of dehalogenation of chlorosilanes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. US Pat. 4309259; Chem. Abstr., 1982, 54, 150653.

    Google Scholar 

  2. O. Glemser, W. N. Lohman, Z. Anorg. Allgem. Chem., 1954, 275, 260.

    Article  CAS  Google Scholar 

  3. JP Pat. 75-17035; Byul. Tokke-Kokho [Tokke Koho Bulletin], 1975, 2, 361 (in Russian).

  4. A. V. Baklanov, E. N. Chesnokov, A. I. Chichinin, Khim. Fiz., 1996, 15, 28 [J. Adv. Chem. Phys. (Engl. Transl.), 1996, 15].

    CAS  Google Scholar 

  5. R. Becerra, S. E. Boganov, M. P. Egorov, V. I. Faustov, O. M. Nefedov, R. Walsh, Can. J. Chem., 2000, 78, 1428.

    CAS  Google Scholar 

  6. S. E. Boganov, V. I. Faustov, M. P. Egorov, O. M. Nefedov, Izv. Akad. Nauk, Ser. Khim., 2004, 920 [Russ. Chem. Bull., Int. Ed., 2004, 53, 960].

    Google Scholar 

  7. I. W. M. Smith, J. Chem. Soc., Faraday Trans., 1991, 87, 2271.

    Article  CAS  Google Scholar 

  8. G. Rollman, P. Entel, Phase Transitions, 2004, 77, 139.

    Article  Google Scholar 

  9. K. Sato, H. Yamada, S. Iwabuchi, J. Chem. Phys., 1985, 89, 2844.

    Google Scholar 

  10. R. Becerra, R. Walsh, J. Phys. Chem., 1987, 91, 5765.

    Article  CAS  Google Scholar 

  11. K. Kamisako, T. Imai, Y. Tarui, Jpn J. Appl. Phys., 1988, 27, 1092.

    Article  CAS  Google Scholar 

  12. A. V. Baklanov, A. I. Chichinin, Chem. Phys., 1994, 181, 119.

    Article  CAS  Google Scholar 

  13. S. Y. Lee, Y. S. Lee, J. Phys. Chem. A, 1986, 7, 218.

    CAS  Google Scholar 

  14. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  15. R. R. Ryan, K. Hedberg, J. Chem. Phys., 1967, 50, 4986.

    Article  Google Scholar 

  16. M. Mitzlaff, P. Holm, H. Hartman, Z. Naturforsch., 1967, 22a, 1415.

    Google Scholar 

  17. R. David, Handbook of Chemistry and Physics, National Institute of Standards and Technologies, 2007, 2385.

  18. R. David, Handbook of Chemistry and Physics, National Institute of Standards and Technologies, 2007, 2380.

  19. J. H. Callomon, E. Hiwta, K. Kuchitsu, W. J. Lafferty, A. G. Maki, C. S. Pote, Bull. Korean Chem. Soc., 1986, 7, 243.

    Google Scholar 

  20. R. David, Handbook of Chemistry and Physics, National Institute of Standards and Technologies, 2007, 2388.

  21. H. B. Schlegel, in New Theoretical Concepts for Understanding Organic Reactions, Ed. J. Bertran, Kluwer Academic, Netherlands, 1989, 33.

    Google Scholar 

  22. C. Peng, P. Y. Ayala, H. B. Schlegel, M. J. Frisch, J. Comp. Chem., 1996, 17, 49.

    Article  CAS  Google Scholar 

  23. C. Gonzalez, H. B. Schlegel, J. Chem. Phys., 1989, 90, 2154.

    Article  CAS  Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision A1, Gaussian Inc., Pittsburgh, 2003.

    Google Scholar 

  25. W. Sandermer, O. N. Glemses, Angew. Chem., 1985, 20, 625.

    Google Scholar 

  26. Xiang Zhang, Yi-hong Ding, Ze-sheng Li, J. Phys. Chem. Chem. Phys., 2001, 3, 965.

    CAS  Google Scholar 

  27. A. c. USSR 656967; Byul. Izobr. [Invention Bulletin], 1979, 14 (in Russian).

  28. A. Kunz, P. Roth, J. Phys. Chem. A, 1999, 103, 841.

    Article  CAS  Google Scholar 

  29. R. Poli, J. N. Harvey, J. Phys. Chem. A, 2000, 122, 1700.

    Google Scholar 

  30. L. Catoire, D. Woiki, P. Roth, Int. J. Chem. Kinet., 1997, 29, 469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vorotyntsev.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, 1507–1512, August, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorotyntsev, A.V., Zelentsov, S.V. & Vorotyntsev, V.M. Quantum chemical simulation of silicon tetrachloride hydrogenation. Russ Chem Bull 60, 1531–1536 (2011). https://doi.org/10.1007/s11172-011-0228-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0228-2

Key words

Navigation