Skip to main content
Log in

Hydroxyl mechanism of the antimalarial effect of artemisinin and its analogs

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Kinetic schemes for the intramolecular oxidation of four artemisinin analogs, which are used as drugs against malaria, were developed. Each stage of the kinetic scheme is characterized by the enthalpy, activation energy, and rate constant calculated using the model of intersecting parabolas. The competition of mono- and bimolecular radical reactions was taken into account when developing the schemes. The hydroperoxide groups are formed as a result of the intramolecular oxidation of these compounds and generate free radicals in the reaction with FeII. Among these free radicals, hydroxyl radicals play the key role, since their yield (n OH) correlates with the antimalarial activity of the peroxide compound. The efficiency of the drug (index IC50) exponentially depends on n OH and is expressed by the formula IC50(Artemisinin)/IC50(Compound) = 1.54·10−6exp(3.9n OH). The elementary reactions resulting in the generation of hydroxyl radicals are considered. It is supposed that DNA of a malaria parasite is the main biological target for hydroxyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, H. Huang, Y.-L. Wu, in Medicinal Chemistry of Bioactive Natural Products, Eds X.-T. Liang, W.-S. Fang, J. Wiley and Sons, New York, 2006, 183.

    Chapter  Google Scholar 

  2. E. T. Denisov, S. L. Solodova, T. G. Denisova, Usp. Khim., 2010, 79, 1065 [Russ. Chem. Rev. (Engl. Transl.), 2010, 79, 981].

    Google Scholar 

  3. S. R. Meshnick, T. E. Taylor, S. Kamchonwongpaisan, Microbiol. Rev., 1996, 60, 301.

    CAS  Google Scholar 

  4. W. Asawamahasakda, I. Ittarat, Y.-M. Pu, H. Ziffer, S. R. Meshnick, Antimicrob. Agents Chemother., 1994, 38, 1854.

    CAS  Google Scholar 

  5. P. M. O’Neill, G. H. Posner, J. Med. Chem., 2004, 47, 2945.

    Article  Google Scholar 

  6. P. A. Berman, P. A. Adams, Free Radical Biol. Med., 1997, 22, 1283.

    Article  CAS  Google Scholar 

  7. B. Meunier, A. Robert, Acc. Chem. Res., 2010, 43, 1444.

    Article  CAS  Google Scholar 

  8. D. J. Creek, W. N. Charman, F. C. K. Chiu, R. J. Prankerd, K. J. McCullough, Y. Dong, J. L. Vennerstrom, S. A. Charman, J. Pharmaceut. Sci., 2007, 96, 2945.

    Article  CAS  Google Scholar 

  9. M. A. Avery, F. Gao, W. K. M. Chong, T. F. Hendrickson, W. D. Inman, P. Crews, Tetrahedron, 1994, 50, 957.

    Article  CAS  Google Scholar 

  10. G. H. Posner, D. Wang, J. N. Cumming, C. H. Oh, A. N. French, A. L. Bodley, T. A. Shapiro, J. Med. Chem., 1995, 38, 2273.

    Article  CAS  Google Scholar 

  11. E. T. Denisov, T. G. Denisova, F. M. D. Ismail, Int. J. Chem. Kinet., 2005, 37, 554.

    Article  CAS  Google Scholar 

  12. S. L. Solodova, E. T. Denisov, Izv. Akad. Nauk, Ser. Khim., 2006, 1502 [Russ. Chem. Bull., Int. Ed., 2006, 55, 1557].

  13. S. L. Solodova, E. T. Denisov, Kinet. Katal., 2007, 48, 220 [Kinet. Catal. (Engl. Transl.), 2007, 48, 204].

    Article  Google Scholar 

  14. S. L. Solodova, E. T. Denisov, T. G. Denisova, Mendeleev Commun., 2008, 18, 24.

    Article  CAS  Google Scholar 

  15. S. L. Solodova, E. T. Denisov, Izv. Akad. Nauk, Ser. Khim., 2008, 267 [Russ. Chem. Bull., Int. Ed., 2008, 57, 274].

  16. S. L. Solodova, E. T. Denisov, Izv. Akad. Nauk, Ser. Khim., 2009, 760 [Russ. Chem. Bull., Int. Ed., 2009, 58, 777].

  17. E. T. Denisov, Proc. EUCHEM Conf. on Organic Free Radicals (Bologna, Italy, June 28–July 2, 2010), Bologna, 2010, 53.

  18. E. T. Denisov, T. G. Denisova, Izv. Akad. Nauk, Ser. Khim., 2010, 1831 [Russ. Chem. Bull., Int. Ed., 2010, 59, 1881].

  19. E. T. Denisov, T. G. Denisova, Butlerov. Soobshch. [Butlerov’s Reports], 2010, 23, No. 15, 11 (in Russian).

    Google Scholar 

  20. S. L. Solodova, E. T. Denisov, Sb. tr. IPKhF RAN “Fizika i khimiya protsessov, orientirovannykh na sozdanie novykh naukoemkikh tekhnologii, materialov i oborudovaniya” [Collection of Works of the Institute of Chemical Physics of the Russian Academy of Sciences “Physics and Chemistry of Processes Oriented at the Development of Novel Science Intensive Technologies, Materials, and Equipment], IPKhF, Chernogolovka, 2007, 264 (in Russian).

    Google Scholar 

  21. E. T. Denisov, Org. Biomol. Chem., 2011, 9, 4219.

    Article  CAS  Google Scholar 

  22. D. J. Creek, W. N. Charman, F. C. K. Chiu, R. J. Frankerd, Y. Dong, J. L. Vennerstrom, S. A. Charman, Antimicrob. Agents Chemother., 2008, 52, 1291.

    Article  CAS  Google Scholar 

  23. E. T. Denisov, Usp. Khim., 1997, 66, 953 [Russ. Chem. Rev. (Engl. Transl.), 1997, 66, 859].

    CAS  Google Scholar 

  24. E. T. Denisov, in General Aspects of the Chemistry of Radicals, Ed. Z. B. Alfassi, Wiley, Chichester, 1999, 79.

    Google Scholar 

  25. E. T. Denisov, I. B. Afanasév, Oxidation and Antioxidants in Organic Chemistry and Biology, CRC Press, Taylor and Francis Group, Boca Raton, FL, 2005, 981 pp.

    Book  Google Scholar 

  26. E. T. Denisov, T. G. Denisova, Usp. Khim., 2004, 73, 1181 [Russ. Chem. Rev. (Engl. Transl.), 2004, 73, 1091].

    Google Scholar 

  27. T. G. Denisova, E. T. Denisov, Kinet. Katal., 2006, 47, 124 [Kinet. Catal. (Engl. Transl.), 2006, 47, 121].

    Article  Google Scholar 

  28. E. T. Denisov, C. Chatgilialoglu, A. F. Shestakov, T. G. Denisova, Int. J. Chem. Kinetics, 2009, 41, 284.

    Article  CAS  Google Scholar 

  29. E. T. Denisov, T. G. Denisova, T. S. Pokidova, Handbook of Free Radical Initiators, Wiley-Interscience, Hoboken, New Jersey, 2003, 879 pp.

    Book  Google Scholar 

  30. T. G. Denisova, E. T. Denisov, Neftekhimiya, 2004, 44, 278 [Petroleum Chemistry (Engl. Transl.), 2004, 44].

    CAS  Google Scholar 

  31. E. T. Denisov, V. E. Tumanov, Usp. Khim., 2005, 74, 905 [Russ. Chem. Rev. (Engl. Transl.), 2005, 74, 825].

    Google Scholar 

  32. Y.-R. Luo, Handbook of Bond Dissociation Energies in Organic Molecules, CRC Press, Boca Raton, 2003, 380 pp.

    Google Scholar 

  33. G. V. Buxton, C. L. Greenstock, W. Ph. Helman, A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513.

    Article  CAS  Google Scholar 

  34. Y.-L. Wu, H.-B. Chen, K. Jiang, Y. Li, F. Shan, D.-Y. Wang, Y.-F. Wang, W.-M. Wu, Y. Wu, Z.-J. Yao, Z.-Y. Yue, C.-M. Zhou, Pure Appl. Chem., 1999, 71, 1139.

    Article  CAS  Google Scholar 

  35. W.-M. Wu, Z.-J. Yao, Y.-L. Wu, K. Jiang, Y.-F. Wang, H.-B. Chen, F. Shan, Y. Li, J. Chem. Soc., Chem. Commun., 1996, 18, 2213.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. T. Denisov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1398–1412, July, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisov, E.T., Denisova, T.G. Hydroxyl mechanism of the antimalarial effect of artemisinin and its analogs. Russ Chem Bull 60, 1421–1435 (2011). https://doi.org/10.1007/s11172-011-0213-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-011-0213-9

Key words

Navigation