Skip to main content
Log in

Synthesis, structure, and electrochemical properties of 12,42-dioxo-21,31-diphenyl-7,10,13-trioxa-1,4(3,1)-diquinoxalina-2(2,3),3(3,2)-diindolizinacyclopentadecaphane

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The oxidative dehydrocyclization of the 3-(indolizin-2′-yl)-2-oxoquinoxaline monopodand performed either electrochemically or under the action of molecular iodine affords new redox-active heterocyclophane consisting of the redox-switchable biindolizine fragment combined with the polyether-bridged π-deficient quinoxaline systems. The single-crystal X-ray diffraction study showed that the trioxaundecane chain of heterocyclophane adopts an extended conformation, and one of the phenyl substituents of the molecule closes the pseudocavity formed by the spacer from one of the sides. The cyclic voltammetric study of heterocyclophane in MeCN and DMF showed the three-step oxidation of the indolizine fragments accompanied by the single-electron transfer in each step. The first and third steps are reversible, and the second step is irreversible. The oxidation at potentials of the first peak gives rise to stable radical cations detected by the ESR method (g = 2.0024, a 2N = 0.26 mT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Lehn, Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim, 1995, 271 pp.

    Google Scholar 

  2. P. D. Beer, Chem. Soc. Rev., 1989, 18, 409; P. D. Beer, Adv. Inorg. Chem., 1992, 79.

    Article  CAS  Google Scholar 

  3. R. A. Bissel, E. Cordova, A. E. Kaifer, and J. F. Stoddart, Nature, 1994, 369, 133.

    Article  Google Scholar 

  4. T. Saji and I. Kinoshita, J. Chem. Soc., Chem. Commun., 1986, 716.

  5. A. M. Allgeier, C. S. Slone, C. A. Mirkin, L. M. Liable-Sands, G. P. A. Yap, and A. L. Rheingold, J. Am. Chem. Soc., 1997, 119, 550.

    Article  CAS  Google Scholar 

  6. Z.-T. Li, P. C. Stein, J. Becher, D. Jensen, P. Mork, and N. Svenstrup, Chem. Eur. J., 1996, 624.

  7. W. Devonport, M. A. Blower, M. R. Bryce, and L. M. Goldenberg, J. Org. Chem., 1997, 62, 885.

    Article  CAS  Google Scholar 

  8. E. Cordova, R. A. Bissel, and A. E. Kaifer, J. Org. Chem., 1995, 60, 1033.

    Article  CAS  Google Scholar 

  9. M. Asakawa, P. R. Ashton, S. E. Boyd, C. L. Brown, R. E. Gillard, O. Kocian, F. M. Raymo, J. F. Stoddart, M. S. Tolley, A. J. P. White, and D. J. Williams, J. Org. Chem., 1997, 62, 26.

    Article  CAS  Google Scholar 

  10. S. Hünig, Liebigs Ann. Chem., 1964, 676, 32.

    Article  Google Scholar 

  11. S. Hünig and F. Linhart, Liebigs Ann. Chem., 1976, 317.

  12. L. Cardellini, P. Carloni, L. Greci, G. Tosi, R. Andruzzi, G. Marrosu, and A. Trazza, J. Chem. Soc., Perkin Trans. 2, 1990, 2117.

  13. M. B. Leitner, T. Kreher, H. Sonnenschein, B. Costisella, and J. Springer, J. Chem. Soc., Perkin Trans. 2, 1997, 377.

  14. V. V. Yanilkin, V. A. Mamedov, A. V. Toropchina, A. A. Kalinin, N. V. Nastapova, V. I. Morozov, R. P. Shekurov, and O. G. Isaikina, Elektrokhimiya, 2006, 42, 251 [Russ. J. Electrochem., 2006, 42 (Engl. Transl.)].

    Google Scholar 

  15. H. Sonnenschein, T. Kreher, E. Gründemann, R.-P. Krüger, A. Kunath, and V. Zabel, J. Org. Chem., 1996, 61, 710.

    Article  CAS  Google Scholar 

  16. T. Kreher, H. Sonnenschein, B. Costisella, and M. Schneider, J. Chem. Soc., Perkin Trans. 1, 1997, 3451.

  17. F. Vogtle and H. Sieger, Angew. Chem., Int. Ed., 1977, 16, 396.

    Article  Google Scholar 

  18. H. Sieger and F. Vogtle, Lieb. Ann. Chem., 1980, 425.

  19. A. F. Pozharskii, Teoreticheskie osnovy khimii geterotsiklov [Theoretical Principles of the Chemistry of Heterocycles], Khimiya, Moscow, 1985, 280 pp. (in Russian).

    Google Scholar 

  20. V. A. Mamedov, A. A. Kalinin, V. V. Yanilkin, A. T. Gubaidullin, Sh. K. Latypov, A. A. Balandina, O. G. Isaikina, A. V. Toropchina, N. V. Nastapova, N. A. Iglamova, and I. A. Litvinov, Izv. Akad. Nauk, Ser. Khim., 2005, 2534 [Russ. Chem. Bull., Int. Ed., 2005, 54, 2616].

  21. A. H. Elwahy, Tetrahedron, 2000, 56, 897.

    Article  CAS  Google Scholar 

  22. A. W. Williamson, J. Chem. Soc., 1852, 4, 229.

    Google Scholar 

  23. A. E. Chichibabin, Chem. Ber., 1927, 60, 1607.

    Google Scholar 

  24. J. Hammer and A. Macaluso, Chem. Rev., 1964, 64, 481.

    Article  Google Scholar 

  25. R. Andruzzi, L. Cardellini, L. Greci, P. Stipa, M. Poloni, and A. Trazza, J. Chem. Soc., Perkin Trans. 1, 1988, 3067.

  26. H. Sonnenshein, H. Kosslick, and F. Tittelbach, Synthesis, 1998, 1596.

  27. Physical Methods in Heterocyclic Chemistry, Ed. A. R. Katritzky, Acad Press, New-York-London, 1963, V.II, 398 p.

    Google Scholar 

  28. G. F. Bol’shakov, V. S. Voiago, and F. B. Agrest, Ul’trafioletovye spektry geteroorganicheskikh soedinenii [Ultraviolet Spectra of Heteroorganic Compounds], Khimiya, Leningrad, 1969, p. 499 (in Russian).

    Google Scholar 

  29. A. E. Derome, Modern NMR Techniques for Chemistry Research, Pergamon, Cambridge, 1988, 280 pp.

    Google Scholar 

  30. Atta-ur-Rahman, One and Two Dimensional NMR Spectroscopy, Elsevier, Amsterdam, 1989.

    Google Scholar 

  31. K. Stott, J. Stonehouse, J. Keeler, T. L. Hwang, and A. J. Shaka, J. Am. Chem. Soc., 1995, 117, 4199.

    Article  CAS  Google Scholar 

  32. A. De Dios, Progr. Nucl. Magn. Res. Spectroscopy, 1996, 29, 229.

    Article  Google Scholar 

  33. G. Barone, L. Gomez-Paloma, D. Duca, A. Silvestri, R. Riccio, and G. Bifulco, Chem. Eur. J., 2002, 8, 3233.

    Article  CAS  Google Scholar 

  34. P. Cimino, L. Gomez-Paloma, D. Duca, R. Riccio, and G. Bifulco, Magn. Reson. Chem., 2004, 42, 26.

    Article  Google Scholar 

  35. I. Alkorta and J. Elguero, Magn. Reson. Chem., 2004, 42, 955.

    Article  CAS  Google Scholar 

  36. A. A. Balandina, A. A. Kalinin, V. A. Mamedov, B. Figadere, and Sh. K. Latypov, Magn. Res. Chem., 2005, 43, 816.

    Article  CAS  Google Scholar 

  37. A. B. Sebag, D. A. Forsyth, and M. A. Plante, J. Org. Chem., 2001, 66, 7967.

    Article  CAS  Google Scholar 

  38. A. B. Sebag, R. N. Hanson, D. A. Forsyth, and C. Y. Lee, Magn. Reson. Chem., 2003, 41, 246.

    Article  CAS  Google Scholar 

  39. E. A. Meyer, R. K. Castellano, and F. Diederich, Angew. Chem., Int. Ed., 2003, 42, 1210.

    Article  CAS  Google Scholar 

  40. F. Cozzi, H. Favre, H. Griinewald, D. Hellwinkel, K. Hirayama, M. A. C. Kaplan, M. V. Kisakiirek, W. H. Powell, R. Panico, J. G. Trayaham, and O. Weissbach, Pure Appl. Chem., 1998, 70, 1513.

    Article  Google Scholar 

  41. H. A. Favre, D. Hellwinkel, W. H. Powell, H.A. Smith, Jr., and S. S.-C. Tsay, Pure Appl. Chem., 2002, 74, 809.

    Article  CAS  Google Scholar 

  42. A. Altomare, G. Cascarano, C. Giacovazzo, and D. Viterbo, Acta Crystallogr. A, 1991, 47, 744.

    Article  Google Scholar 

  43. G. M. Sheldrick, SHELX-97. Programs for Crystal Structure Analysis (Release 97-2), University of Gottingen, Germany, 1997, 154 p.

    Google Scholar 

  44. L. H. Straver and A. J. Schierbeek, MolEN. Structure Determination System, V. 1. Program Description, Delft: Nonius B.V., 1994, 180 pp.

    Google Scholar 

  45. L. J. Farrugia, WINGX Main Reference, J. Appl. Cryst., 1999, 32, 837.

    Google Scholar 

  46. Mercury 1.3. User Guide, The Cambridge Crystallographic Data Centre, 2004, 186 pp.

  47. A. L. Spek, PLATON for Windows, Version 98; A. L. Spek, Acta Crystallogr., 1990, 46, 34.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Mamedov.

Additional information

Dedicated to Professor E. A. Berdnikov on the occasion of his 70th birthday.

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1991–2003, October, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mamedov, V.A., Kalinin, A.A., Yanilkin, V.V. et al. Synthesis, structure, and electrochemical properties of 12,42-dioxo-21,31-diphenyl-7,10,13-trioxa-1,4(3,1)-diquinoxalina-2(2,3),3(3,2)-diindolizinacyclopentadecaphane. Russ Chem Bull 56, 2060–2073 (2007). https://doi.org/10.1007/s11172-007-0322-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-007-0322-7

Key words

Navigation