Skip to main content
Log in

Mechanism of the reaction of neutral and anionic N-nucleophiles with α-halocarbonyl compounds

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

N-Acylalkylation of neutral and anionic N-nucleophiles with α-halocarbonyl compounds was investigated by quantum chemical methods in terms of the density functional theory and by experimental methods for 2,3-dihydroimidazo[2,1-b]quinazolin-1(10)H-5-one, its N-anion, and simpler model structures. High reactivity of these reagents is determined primarily by stabilization of transition states (TS) by bridge bonds involving halogen or nitrogen atoms rather than by conjugation, as has been commonly accepted. Bridged TS are formed by both the substitution mechanism S N 2 and the addition-elimination mechanism. α-Haloalkyl-substituted zwitterions, which are potential intermediates of stepwise N-acylalkylation of neutral N-nucleophiles, do not exist in the isolated state, but they are rather efficiently stabilized upon solvation. These zwitterions, as well as analogous O-anions generated from anionic N-nucleophiles, can serve as intermediates of N-acylalkylation, as was demonstrated by localization of the corresponding TS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. W. Erian, S. M. Sherif, and H. M. Gaber, Molecules, 2003, 8, 793; (b) I. K. Moiseev, M. N. Zemtsova, and N. V. Makarova, Khim. Geterotsikl. Soedin., 1994, 867 [Chem. Heterocycl. Compd., 1994, 30, 745 (Engl. Transl.)].

    Article  CAS  Google Scholar 

  2. J. B. Conant and W. R. Kirner, J. Am. Chem. Soc., 1924, 46, 232.

    Article  CAS  Google Scholar 

  3. J. B. Conant and R. E. Hussey, J. Am. Chem. Soc., 1925, 47, 476.

    Article  CAS  Google Scholar 

  4. J. B. Conant, W. R. Kirner, and R. E. Hussey, J. Am. Chem. Soc., 1925, 47, 488.

    Article  CAS  Google Scholar 

  5. R. G. Pearson, S. H. Langer, F. V. Forrest, and W. J. McGuire, J. Am. Chem. Soc., 1952, 74, 5130.

    Article  Google Scholar 

  6. A. J. Sisti and S. Lowell, Can. J. Chem., 1964, 42, 1896.

    Article  CAS  Google Scholar 

  7. J. W. Thorpe and J. Warkentin, Can. J. Chem., 1973, 51, 927.

    Article  CAS  Google Scholar 

  8. D. M. Kalendra and B. R. Sickles, J. Org. Chem., 2003, 68, 1594.

    Article  CAS  Google Scholar 

  9. F. G. Bordwell and W. T. Brannen, J. Am. Chem. Soc., 1964, 86, 4645.

    Article  CAS  Google Scholar 

  10. F. Carrion and M. J. S. Dewar, J. Am. Chem. Soc., 1984, 106, 3531.

    Article  CAS  Google Scholar 

  11. D. J. McLennan and A. Pross, J. Chem. Soc., Perkin Trans. 2, 1984, 981.

  12. R. D. Bach, B. A. Coddens, and G. J. Wolber, J. Org. Chem., 1986, 51, 1030.

    Article  CAS  Google Scholar 

  13. D. Kost and K. Aviram, J. Am. Chem. Soc., 1986, 108, 2006.

    Article  CAS  Google Scholar 

  14. F. A. Carey and R. J. Sundberg, Advanced Organic Chemistry, Structure and Mechanisms, 4th ed., Kluwer Press, New York-Boston, 2000, A, 302.

    Google Scholar 

  15. T. I. Yousaf and E. S. Lewis, J. Am. Chem. Soc., 1987, 109, 6137.

    Article  CAS  Google Scholar 

  16. V. Gineityte, J. Mol. Struct. (Theochem.), 2003, 663, 47.

    Article  CAS  Google Scholar 

  17. S. Shaik, J. Am. Chem. Soc., 1983, 105, 4359.

    Article  CAS  Google Scholar 

  18. P. D. Bartlett and E. N. Trachtenberg, J. Am. Chem. Soc., 1958, 80, 5808.

    Article  CAS  Google Scholar 

  19. J. March, Advanced Organic Chemistry, Reactions, Mechanisms and Structure, Wiley Intersci. Publ., New York, 1985.

    Google Scholar 

  20. T. H. Lowry and K. S. Richardson, Mechanism and Theory in Organic Chemistry, Harper and Row, New York, 1987, 704; 707; 709.

    Google Scholar 

  21. J. W. Baker, Trans. Faraday Soc., 1941, 37, 632.

    Article  CAS  Google Scholar 

  22. H. J. Koh, K. L. Han, H. W. Lee, and I. Lee, J. Org. Chem., 2000, 65, 4706.

    Article  CAS  Google Scholar 

  23. I. Lee, H. W. Lee, and Y.-K. Yu, Bull. Korean Chem. Soc., 2003, 24, 993.

    Article  CAS  Google Scholar 

  24. K. S. Lee, K. K. Adhikary, H. W. Lee, B.-S. Lee, and I. Lee, Org. Biomol. Chem., 2003, 1, 1989.

    Article  CAS  Google Scholar 

  25. Organic Syntheses. An Annual Publication of Satisfactory Methods for the Preparation of Organic Chemicals, Ed. L. S. Hegedus, Wiley, Hoboken (New Jersey), 2003, 79, 228.

    Google Scholar 

  26. M. Masaki, K. Fukui, and M. Ohta, J. Org. Chem., 1967, 32, 3564.

    Article  CAS  Google Scholar 

  27. T. I. Temnikova and E. N. Kropacheva, Zh. Obshch. Khim., 1949, 19, 1917 [J. Gen. Chem. USSR, 1949, 19 (Engl. Transl.)].

    CAS  Google Scholar 

  28. C. L. Stevens, W. Malik, and R. Pratt, J. Am. Chem. Soc., 1950, 72, 4758.

    Article  CAS  Google Scholar 

  29. C. L. Stevens and E. Farkas, J. Am. Chem. Soc., 1957, 79, 3448.

    Article  CAS  Google Scholar 

  30. D. T. Mowry, Chem. Rev., 1948, 42, 189.

    Article  CAS  Google Scholar 

  31. M. Yasuda, T. Ohata, I. Shibata, A. Baba, and H. Matsuda, J. Chem. Soc., Perkin Trans. 1, 1993, 859.

  32. K. Ya. Burstein and A. N. Isaev, J. Mol. Struct. (Theochem.), 1985, 133(26), 263; (b) A. N. Isaev, Izv. Akad. Nauk, Ser. Khim., 1994, 227 [Russ. Chem. Bull., 1994, 43, 206 (Engl. Transl.)].

    Article  Google Scholar 

  33. I. H. Williams, J. Am. Chem. Soc., 1987, 109, 6299.

    Article  CAS  Google Scholar 

  34. R. McGrindle and A. J. McAlees, J. Chem. Soc., Chem. Commun., 1983, 61.

  35. F. L. Weisenborn and J. S. P. Schwarz, US Pat. 3360560; http://v3.espacenet.com.

  36. L. V. Saloutina, M. I. Kodess, and A. Ya. Zapevalov, Izv. Akad. Nauk, Ser. Khim., 1994, 2177 [Russ. Chem. Bull., 1994, 43, 2057 (Engl. Transl.)].

    Google Scholar 

  37. M. L. M. Schilling, H. D. Roth, and W. C. Herndon, J. Am. Chem. Soc., 1980, 102, 4271.

    Article  CAS  Google Scholar 

  38. H. Diebler and R. N. F. Thorneley, J. Am. Chem. Soc., 1973, 95, 896.

    Article  CAS  Google Scholar 

  39. W. P. Jenks, Acc. Chem. Res., 1976, 9, 425.

    Article  Google Scholar 

  40. P. E. Fanta, in The Chemistry of Heterocyclic Compounds, Part 1, Heterocyclic Compounds with Three-and Four-membered Rings, Ed. A. Weissberger, Interscience, New York-London-Sydney, 1964, 548.

    Google Scholar 

  41. G. A. Olah, P. W. Westerman, G. Melby, and Y. K. Mo, J. Am. Chem. Soc., 1974, 96, 3565.

    Article  CAS  Google Scholar 

  42. G. A. Olah, Halonium Ions, Wiley-Interscience, New York, 1975.

    Google Scholar 

  43. G. A. Olah, G. K. S. Prakash, R. E. Williams, I. D. Field, and K. Wade, Hypercarbon Chemistry, Wiley-Interscience, New York-Chichester-Brisbane-Toronto-Singapore, 1987.

    Google Scholar 

  44. J. M. Bollinger, J. M. Brinich, and G. A. Olah, J. Am. Chem. Soc., 1970, 92, 4025.

    Article  CAS  Google Scholar 

  45. D. Kilemet, Z. Mihalic, I. Novak, and H. Vancik, J. Org. Chem., 1999, 64, 4931.

    Article  Google Scholar 

  46. S. Wolfe, D. J. Mitchell, and H. B. Schlegel, Can. J. Chem., 1982, 60, 1291.

    Article  CAS  Google Scholar 

  47. R. M. Minyaev and E. A. Lepin, Mendeleev Commun., 1997, 189.

  48. The Chemistry of Functional Groups. Suppl.A3, The Chemistry of Double-Bonded Functional Groups, Ed. S. Patai, J. Wiley and Sons, 1997, 1113.

  49. A. S. Morkovnik, L. N. Divaeva, and T. A. Kuz’menko, Izv. Akad. Nauk, Ser. Khim., 2006, 876 [Russ. Chem. Bull., Int. Ed., 2006, 55, 907]; (b) G. H. Hardtmann, G. Koletar, and O. R. Pfister, J. Med. Chem., 1975, 18, 447.

  50. G. E. Hardtmann, US Pat. 4020062; http://v3.espacenet.com.

  51. W. Forster and R. M. Laird, J. Chem. Soc., Perkin Trans. 2, 1982, 135.

  52. A. Streitwieser, E. G. Jayasree, S. S.-H. Leung, and G. S.-C. Choy, J. Org. Chem., 2005, 70, 8486.

    Article  CAS  Google Scholar 

  53. V. I. Minkin, A. D. Garnovskii, J. Elguero, A. R. Katritzky, and O. V. Denisko, Adv. Heterocycl. Chem., 2000, 76, 203.

    Google Scholar 

  54. F.-T. Hung, W.-P. Hu, T.-H. Li, C.-C. Cheng, and P.-T. Chou, J. Phys. Chem. A, 2003, 107, 3244.

    Article  CAS  Google Scholar 

  55. D. Jacquemin, J. Preat, V. Wathelet, M. Fontaine, and E. A. Perpete, J. Am. Chem. Soc., 2006, 128, 2072.

    Article  CAS  Google Scholar 

  56. J. K. Laerdahl and E. Uggerud, Int. J. Mass Spectrom., 2002, 214, 277.

    Article  CAS  Google Scholar 

  57. A. Streitwieser, G. S.-C. Choy, and F. Abu-Hasanayn, J. Am. Chem. Soc., 1997, 119, 5013.

    Article  CAS  Google Scholar 

  58. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.

    Article  CAS  Google Scholar 

  59. K. K. Irikura, R. D. Johnson, III, and R. N. Kacker, J. Phys. Chem. A, 2005, 109, 8430.

    Article  CAS  Google Scholar 

  60. T. Jen and B. Loev, US Pat. 3745216; http://v3.espacenet.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Morkovnik.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1150–1164, June, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morkovnik, A.S., Divaeva, L.N. & Anisimova, V.A. Mechanism of the reaction of neutral and anionic N-nucleophiles with α-halocarbonyl compounds. Russ Chem Bull 56, 1194–1209 (2007). https://doi.org/10.1007/s11172-007-0182-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-007-0182-1

Key words

Navigation