Skip to main content
Log in

Complexes of ZrIV and HfIV with monolacunary Keggin-and Dawson-type anions

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The reactions of the tetranuclear hydroxo complexes [M42-OH)8(H2O)16]8+ (M = Zr or Hf) with the lacunary Keggin-type ([α-PW11O39]7−) and Dawson-type ([α 2-P2W17O61]10−) phosphotungstates in aqueous solutions produce the sandwich polyoxometalate complexes [M(α-PW11O39)2]10− (M = Zr (1) or Hf (2)) and [M(α 2-P2W17O61)2]16− (M = Zr (3) and Hf (4)). The complexes were isolated and structurally characterized as salts with potassium and dimethylammonium cations. The zirconium and hafnium atoms have a square antiprismatic coordination environment (coordination number is 8). In all complexes, the mutual arrangement of the ligands corresponds to the syn isomer. Hafnium complexes 2 and 4 are the first structurally characterized polyoxometalate complexes of this metal. The structures of the resulting compounds were confirmed also by 31P NMR spectroscopy in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q.-H. Luo, R. C. Howell, M. Dankova, J. Bartis, C. W. Williams, W. D. Horrocks, Jr, V. G. Young, Jr, A. L. Rheingold, L. C. Franceskoni, and M. R. Antonio, Inorg. Chem., 2001, 40, 1894.

    Article  CAS  Google Scholar 

  2. M. R. Antonio, L. Soderholm, C. W. Williams, N. Ullah, and L. C. Franceskoni, J. Chem. Soc., Dalton Trans., 1999, 3825.

  3. M.-H. Chiang, C. W. Williams, L. Soderholm, and M. R. Antonio, Eur. J. Inorg. Chem., 2003, 2663.

  4. A. S. Saprykin, V. P. Shilov, V. I. Spitsyn, and N. N. Krot, Dokl. Akad. Nauk SSSR, 1976, 226, 853 [Dokl. Chem., 1976 (Engl. Transl.)].

    CAS  Google Scholar 

  5. V. N. Kosyakov, G. A. Timofeev, and E. A. Erin, Radiokhimiya, 1977, 19, 82 [Radiochemistry, 1977, 19 (Engl. Transl.)].

    CAS  Google Scholar 

  6. A. M. V. Cavaleiro, J. D. Pedrosa de Jesus, and H. I. S. Noguera, Metal Clusters in Chemistry, Eds P. Braunstein, P. Raithby, and L. Oro, Wiley—VCH, London, 1999, 1, 444.

    Google Scholar 

  7. G. M. Maksimov, R. I. Maksimovskaya, and I. V. Kozhevnikov, Zh. Neorg. Khim., 1992, 37, 2279 [Russ. J. Inorg. Chem., 1992, 37 (Engl. Transl.)].

    CAS  Google Scholar 

  8. J. F. Kirby and L. C. W. Baker, Inorg. Chem., 1998, 37, 5537.

    Article  CAS  Google Scholar 

  9. A. Ostuni, R. E. Bachman, and M. T. Pope, J. Cluster Science, 2003, 14, 431.

    Article  CAS  Google Scholar 

  10. R. G. Finke, B. Rapko, and T. J. R. Weakley, Inorg. Chem., 1989, 28, 1573.

    Article  CAS  Google Scholar 

  11. B. S. Bassil, M. H. Dickman, and U. Kortz, Inorg. Chem., 2006, 45, 2394.

    Article  CAS  Google Scholar 

  12. A. J. Gaunt, I. May, D. Collison, and M. Helliwell, Acta Crystallogr., Sect. C, 2003, 59, i65.

    Article  Google Scholar 

  13. A. J. Gaunt, I. May, D. Collison, K. T. Holman, and M. T. Pope, J. Mol. Struct., 2003, 656, 101.

    Article  CAS  Google Scholar 

  14. A. J. Gaunt, I. May, D. Collison, and O. D. Fox, Inorg. Chem., 2003, 42, 5049.

    Article  CAS  Google Scholar 

  15. X. Fang, T. M. Anderson, Y. Hou, and C. L. Hill, Chem. Commun., 2005, 5044.

  16. X. Fang, T. M. Anderson, and C. L. Hill, Angew. Chem., Int. Ed., 2005, 44, 3540.

    Article  CAS  Google Scholar 

  17. E. V. Radkov, V. G. Young, Jr, and R. H. Beer, J. Am. Chem. Soc., 1999, 121, 8953.

    Article  CAS  Google Scholar 

  18. R. Villanneau, H. Carabineiro, X. Carrier, R. Thouvenot, P. Herson, F. Lemos, F. R. Ribeiro, and M. Che, J. Phys. Chem. B, 2004, 108, 12465.

    Google Scholar 

  19. X. Wang, F. Li, and Y. Chen, Inorg. Chem. Commun., 2005, 8, 70.

    Article  CAS  Google Scholar 

  20. C. Zhang, R. C. Howell, Q.-H. Luo, H. L. Fieselmann, L. J. Todaro, and L. C. Franceskoni, Inorg. Chem., 2005, 44, 3569.

    Article  CAS  Google Scholar 

  21. O. A. Kholdeeva, M. Timofeeva, G. N. Maksimov, R. I. Maksimovskaya, W. A. Neiwert, and C. L. Hill, Inorg. Chem., 2005, 44, 666.

    Article  CAS  Google Scholar 

  22. R. Contant, Can. J. Chem., 1987, 65, 568.

    Article  CAS  Google Scholar 

  23. D. K. Lyon, W. K. Miller, T. Novet, W. J. Domaille, E. Evitt, W. C. Johnson, and R. G. Finke, J. Am. Chem. Soc., 1991, 113, 7209.

    Article  CAS  Google Scholar 

  24. APEX2 (Version 1.08), SAINT (Version 7.03), and SADABS (Version 2.11). Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison (Wisconsin, USA), 2004.

  25. M. C. Burla, R. Caliandro, M. Camalli, B. Carrozzini, G. L. Cascarano, L. De Caro, C. Giacovazzo, G. Polidori, and R. Spagna, J. Appl. Crystallogr., 2005, 38, 381.

    Article  CAS  Google Scholar 

  26. G. M. Sheldrick, SHELXS97 and SHELXL97. Programs for the Refinement of Crystal Structures, Gö ttingen University, Göttingen (Germany), 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Sokolov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 214–218, February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, M.N., Chubarova, E.V., Peresypkina, E.V. et al. Complexes of ZrIV and HfIV with monolacunary Keggin-and Dawson-type anions. Russ Chem Bull 56, 220–224 (2007). https://doi.org/10.1007/s11172-007-0036-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-007-0036-x

Key words

Navigation