Skip to main content
Log in

Products, kinetic regularities, and mechanism of thermal decomposition of ethyl(methyl)dioxirane

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The products and kinetic regularities of thermal decomposition of ethyl(methyl)dioxirane (EMD) were studied. The consumption of EMD occurs via four parallel pathways: two isomerizations to ethyl acetate and methyl propionate, solvent oxidation via insertion of the oxygen atom into the C-H bond of a solvent molecule (butanone), and hydrogen atom abstraction from the solvent by dioxirane with radical escape from the cage. The contribution of the latter route to the oxidation of butan-2-one at 35 °C is 43%. Alkyl radicals initiate EMD decomposition in an inert atmosphere. The activation parameters of EMD isomerization to esters and the reaction of EMD with butanone were determined. The isomerization of EMD was studied by the DFT method. The geometric parameters were optimized at the UB3LYP level using the 6-31G** and/or 6-311+G** basis sets. The calculated energies were corrected taking into account zero-point vibrations. The theoretical results are in good agreement with experimental data. The mechanism of EMD thermolysis is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Adam, L. P. Hadjiarapoglou, R. Curci, and R. Mello, in Organic Peroxides, Ed. W. Ando, J. Wiley and Sons Ltd., Chichester, 1992, p. 195.

    Google Scholar 

  2. S. A. Grabovskiy and N. N. Kabal’nova, in Sovremennyi organicheskii sintez [Modern Organic Synthesis], Khimiya, Moscow, 2003, p. 252 (in Russian).

    Google Scholar 

  3. D. V. Kazakov, A. I. Voloshin, V. P. Kazakov, V. V. Shereshovets, and N. N. Kabal’nova, Khimiya i khemilyuminestsentsiya dioksiranov [Chemistry and Chemiluminescence of Dioxiranes], Moscow, Nauka, 1999, 165 pp. (in Russian).

    Google Scholar 

  4. S. L. Khursan, S. A. Grabovskiy, N. N. Kabal’nova, E. G. Galkin, and V. V. Shereshovets, Izv. Akad. Nauk, Ser. Khim., 2000, 1344 [Russ. Chem. Bull., Int. Ed., 2000, 49, 1338].

    Google Scholar 

  5. R. I. Martinez, R. E. Huie, and J. T. Herron, Chem. Phys. Lett., 1977, 51, 457.

    Article  CAS  Google Scholar 

  6. R. D. Suenram and F. J. Lovas, J. Am. Chem. Soc., 1978, 100, 5117.

    Article  CAS  Google Scholar 

  7. W. Adam, R. Curci, M. E. G. Nunez, and R. Mello, J. Am. Chem. Soc., 1991, 113, 7654.

    Article  CAS  Google Scholar 

  8. W. W. Sander, K. Schroeder, S. Muthusamy, A. Kirschfeld, W. Kappert, R. Boese, E. Kraka, C. Sosa, and D. Cremer, J. Am. Chem. Soc., 1997, 119, 7265.

    Article  Google Scholar 

  9. A. Kirschfeld, S. Muthusamy, and W. Sander, Angew. Chem., 1994, 106, 2261.

    CAS  Google Scholar 

  10. R. W. Murray, M. Singh, and R. Jeyaraman, J. Am. Chem. Soc., 1992, 114, 1346.

    Article  CAS  Google Scholar 

  11. A. J. Gordon and R. A. Ford, A Handbook of Practical Data, Techniquies and References, Wiley, New York, 1972.

    Google Scholar 

  12. R. W. Murray and R. Jeyaraman, J. Org. Chem., 1985, 50, 2847.

    Article  CAS  Google Scholar 

  13. F. Neuser, H. Zorn, and R. G. Berger, J. Agric. Food Chem., 2000, 48, 6191.

    Article  CAS  Google Scholar 

  14. S. Bornemann, D. H. G. Crout, H. Dalton, V. Kren, M. Lobell, G. Dean, N. Thomson, and M. M. Turne, J. Chem. Soc., Perkin Trans. 1, 1996, 425.

  15. L. Cottrell, B. T. Golding, T. Munter, and W. P. Watson, Chem. Res. Toxicol., 2001, 14, 1552.

    Article  CAS  Google Scholar 

  16. D. R. Boyd, D. Clarke, M. C. Cleij, J. T. G. Hamilton, and G. N. Sheldrake, Monatsh. Chem., 2000, 131, 673.

    CAS  Google Scholar 

  17. M. Singh and R. W. Murray, J. Org. Chem., 1992, 57, 426.

    Article  Google Scholar 

  18. H. Kropf and S. Munke, in Methoden der Organiche Chemie, Houben-Weyl, Stuttgart, 1988, E13, p. 1395.

    Google Scholar 

  19. T. Kuwana, Anal. Chem., 1963, 35, 1398.

    Article  CAS  Google Scholar 

  20. S. D. Razumovskii, Kislorod — elementarnye formy i svoistva [Oxygen: Elementary Forms and Properties], Khimiya, Moscow, 1979, 304 pp. (in Russian).

    Google Scholar 

  21. A. D. Becke, Phys. Rev. A, 1988, 37, 785.

    Google Scholar 

  22. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Article  CAS  Google Scholar 

  23. C. Lee, W. Yang, and R. G. Parr, Phys. Rev., 1988, B41, 785.

    Google Scholar 

  24. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, J. Wiley and Sons, New York, 1985, 548 pp.

    Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, GAUSSIAN-98, Revision A.7, GAUSSIAN, Inc., Pittsburgh (PA), 1998.

    Google Scholar 

  26. E. T. Denisov, N. I. Mitskevich, and V. E. Agabekov, Mekhanizm zhidkofaznogo okisleniya kislorodsoderzhashchikh soedinenii [Mechanism of Liquid-Phase Oxidation of Oxygen-Containing Compounds], Nauka i Tekhnika, Minsk, 1975, 336 pp. (in Russian).

    Google Scholar 

  27. D. Cremer, E. Kraka, and P. G. Szalay, Chem. Phys. Lett., 1988, 292, 97.

    Article  Google Scholar 

  28. M. Freccero, R. Gandolfi, M. Sarzi-Amadè, and A. Rastelli, J. Org. Chem., 2003, 68, 811.

    Article  CAS  Google Scholar 

  29. G. V. Shustov and A. Rauk, J. Org. Chem., 1998, 63, 5413.

    Article  CAS  Google Scholar 

  30. B. C. Gilbert, R. O. C. Norman, G. Placucci, and R. C. Sealy, J. Chem. Soc., Perkin Trans. 2, 1975, 885.

  31. F. Minisci, L. Zhao, F. Fontana, and A. Bravo, Tetrahedron Lett., 1995, 36, 1697.

    Article  CAS  Google Scholar 

  32. D. V. Kazakov, N. N. Kabal’nova, S. L. Khursan, and V. V. Shereshovets, Izv. Akad. Nauk, Ser. Khim., 1997, 694 [Russ. Chem. Bull., 1997, 46, 663 (Engl. Transl.)].

    Google Scholar 

  33. P. Neta, R. E. Huie, and A. B. Ross, J. Phys. Chem. Ref. Data, 1990, 19, 413.

    Article  CAS  Google Scholar 

  34. Solution Kinetics Database on the Web, National Institute of Standards and Technology, USA, updated: February 03, 2005.

  35. S. A. Grabovskiy, A. V. Antipin, and N. N. Kabal’nova, Kinet. Katal., 2004, 45, 859 [Kinet. Catal., 2004, 45, 809 (Engl. Transl.)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1716–1723, October, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabovskiy, S.A., Markov, E.A., Ryzhkov, A.B. et al. Products, kinetic regularities, and mechanism of thermal decomposition of ethyl(methyl)dioxirane. Russ Chem Bull 55, 1780–1787 (2006). https://doi.org/10.1007/s11172-006-0487-5

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-006-0487-5

Key words

Navigation