Skip to main content
Log in

Co(II)-Mediated and microwave assisted coupling between 2,6-diaminopyridine and nitriles. A new synthetic route to N-(6-aminopyridin-2-yl)carboximidamides

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The Chinese-lantern-type Co2(O2CBut)4{2,6-(NH2)2C5H3 N}2 complex reacts with RCN (R = Me or Prn) under microwave irradiation (MWI) to give the mononuclear amidine complexes Co(O2CBut)2{H2N(C5H3 N)NHC(R)=NH} (R = Me (4a) or Prn (4c)). Under microwave irradiation, the addition of 2,6-diaminopyridine to acetonitrile in the presence of the pivalate complexes Co22-OH2)(O2CBut)4(HO2CBut)4 (1) or [Co(OH)n(O2CBut)2−n ]x (2) afforded complex 4a in higher yield compared to the corresponding reaction performed earlier without MWI. The use of MWI makes it possible to perform analogous reactions with nitriles RCN (R = Et, Prn, or Ph) giving rise to complexes 4b—d, respectively. Compounds 4a—d were characterized by elemental analysis and IR spectroscopy. The structure of complex 4c was established by X-ray diffraction. Amidines H2N(C5H3N)NHC(R)=NH, which formed in the coordination sphere of cobalt(II), were isolated in the free state from methanolic solutions of complexes 4a—d under the action of Na2S and were characterized by electrospray mass spectrometry and 1H and 13C{1H} NMR spectroscopy. The reactions of 2-aminopyridine with both complexes 1 and 2 in acetonitrile under microwave irradiation produced the Co(O2CBut)2(H2NC5H4N)2 complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Mavandadi and P. Lidstrom, Curr. Topics Med. Chem., 2004, 4, 773.

    Article  CAS  Google Scholar 

  2. A. Corsaro, U. Chiacchio, V. Pistara, and G. Romeo, Curr. Org. Chem., 2004, 8, 511.

    Article  CAS  Google Scholar 

  3. M. Nuchter, B. Ondruschka, W. Bonrath, and A. Gum, Green Chem., 2004, 6, 128.

    Article  CAS  Google Scholar 

  4. H. Will, P. Scholz, and B. Ondruschka, Chem. Eng. Technol., 2004, 27, 113.

    Article  CAS  Google Scholar 

  5. M. Nüchter, U. Müller, B. Ondruschka, A. Tied, and W. Lautenschläger, Chem. Eng. Technol., 2003, 26, 1207.

    Article  CAS  Google Scholar 

  6. K. M. K. Swamy, W. B. Yeh, M. J. Lin, and C. M. Sun, Curr. Med. Chem., 2003, 10, 2403.

    Article  CAS  Google Scholar 

  7. N. Kuhnert, Angew. Chem., 2002, 41, 1863.

    Article  CAS  Google Scholar 

  8. M. Larhed, C. Moberg, and A. Hallberg, Acc. Chem. Res., 2002, 35, 717.

    Article  CAS  Google Scholar 

  9. V. Santagada, E. Perissutti, and G. Caliendo, Curr. Med. Chem., 2002, 9, 1251.

    CAS  Google Scholar 

  10. P. Lidstöm, J. Tierney, B. Wathey, and J. Westman, Tetrahedron, 2001, 57, 9225.

    Article  Google Scholar 

  11. M. Larhed and A. Hallberg, Drug Discovery Today, 2001, 6, 406.

    Article  CAS  Google Scholar 

  12. C. R. Strauss and R. W. Trainor, Austr. J. Chem., 1995, 48, 1665.

    CAS  Google Scholar 

  13. M. O. Liu and A. T. Hu, J. Organomet. Chem., 2004, 689, 2450.

    Article  CAS  Google Scholar 

  14. M. O. Liu, Ch-H. Tai, W.-Y. Wang, J.-R. Chen, A. T. Hu, and T.-H. Wei, J. Organomet. Chem., 2004, 689, 1078.

    Article  CAS  Google Scholar 

  15. H. I. Beltran, R. Esquivel, A. Sosa-Sanchez, J. L. Sosa-Sanchez, H. Hopfl, V. Barba, N. Farfan, M. G. Garcia, O. Olivares-Xometl, and L. S. Zamudio-Rivera, Inorg. Chem., 2004, 43, 3555.

    Article  CAS  Google Scholar 

  16. S. Komarneni, Curr. Sci., 2003, 85, 1730.

    CAS  Google Scholar 

  17. M. Ardon, P. D. Hayes, and G. Hogarth, J. Chem. Educ., 2002, 79, 1249.

    Article  CAS  Google Scholar 

  18. X. M. Xiao, J. Sakamoto, M. Tanabe, S. Yamazaki, S. Yamabe, and T. Matsumura-Inoue, J. Electroanalytical Chem., 2002, 527, 33.

    Article  CAS  Google Scholar 

  19. A. V. Murugan, R. S. Sonawane, B. B. Kale, S. K. Apte, and A. V. Kulkarni, Mater. Chem. Phys., 2001, 71, 98.

    Article  Google Scholar 

  20. O. Palchik, R. Kerner, Z. Zhu, and A. Gedanken, J. Solid State Chem., 2000, 154, 530.

    Article  CAS  Google Scholar 

  21. N. Yoshikawa, Y. Masuda, and T. Matsumura-Inoue, Chem. Lett., 2000, 10, 1207.

    Google Scholar 

  22. C. Ungurenasu, Synthesis, 1999, 10, 1729.

    Article  Google Scholar 

  23. D. R. Baghurst, S. R. Cooper, D. L. Greene, D. M. P. Mingos, and S. M. Reynolds, Polyhedron, 1990, 9, 893.

    Article  CAS  Google Scholar 

  24. K. V. Luzyanin, V. Y. Kukushkin, M. L. Kuznetsov, D. A. Garnovskii, M. Haukka, and A. J. L. Pombeiro, Inorg. Chem., 2002, 41, 2981.

    Article  CAS  Google Scholar 

  25. M. A. J. Charmier, V. Y. Kukushkin, and A. J. L. Pombeiro, J. Chem. Soc., Dalton Trans., 2003, 2540.

  26. V. Yu. Kukushkin and A. J. L. Pombeiro, Chem. Rev., 2002, 102, 1771.

    Article  CAS  Google Scholar 

  27. Yu. N. Kukushkin, in Reaktsionnaya sposobnost’ koordinatsionnykh soedinenii [Reactivity of Coordination Compounds], Khimiya, Leningrad, 1987, p. 145 (in Russian).

    Google Scholar 

  28. R. A. Michelin, M. Mozzon, and R. Bertani, Coord. Chem. Rev., 1996, 147, 299.

    Article  CAS  Google Scholar 

  29. T. B. Mikhailova, E. V. Pakhmutova, A. E. Malkov, I. F. Golovaneva, A. A. Sidorov, I. G. Fomina, G. G. Aleksandrov, V. N. Ikorskii, V. M. Novotortsev, I. L. Eremenko, and I. I. Moiseev, Izv. Akad. Nauk, Ser. Khim., 2003, 1994 [Russ. Chem. Bull., Int. Ed., 2003, 52, 2105].

    Google Scholar 

  30. E. V. Pakhmutova, A. E. Malkov, T. B. Mikhailova, A. A. Sidorov, I. G. Fomina, G. G. Aleksandrov, V. M. Novotortsev, V. N. Ikorskii, and I. L. Eremenko, Izv. Akad. Nauk, Ser. Khim., 2003, 2006 [Russ. Chem. Bull., Int. Ed., 2003, 52, 2117].

    Google Scholar 

  31. M. A. Golubnichaya, A. A. Sidorov, I. G. Fomina, M. O. Ponina, S. M. Deomidov, S. E. Nefedov, I. L. Eremenko, and I. I. Moiseev, Izv. Akad. Nauk, Ser. Khim., 1999, 1773 [Russ. Chem. Bull., Int. Ed., 1999, 48, 1751].

    Google Scholar 

  32. F. A. Allen, O. Kennard, and D. G. Watson, J. Chem. Soc., Perkin Trans. 2, 1987, S1.

  33. R. Custelcean and J. E. Jackson, J. Am. Chem. Soc., 1998, 120, 12935.

    Google Scholar 

  34. C. H. Schwalbe, G. J. B. Williams, and T. F. Koetzle, Acta Crystallogr., Sect. C, 1987, 43, 2191.

    Article  Google Scholar 

  35. G. Smith, R. Bott, A. D. Rae, and A. C. Willis, Aust. J. Chem., 2000, 53, 531.

    Article  CAS  Google Scholar 

  36. G. Smith, C. E. Pascoe, C. H. L. Kennard, and K. A. Byriel, Aust. J. Chem., 1999, 52, 71.

    Article  CAS  Google Scholar 

  37. V. Bertolasi, L. Pretto, P. Gilli, V. Ferretti, and G. Gilli, New J. Chem., 2002, 26, 1559.

    Article  CAS  Google Scholar 

  38. N. Lah, G. Giester, P. Segedin, A. Murn, K. Podlipnik, and I. Leban, Acta Crystallogr., Sect. C, 2001, 57, 546.

    Article  CAS  Google Scholar 

  39. X. Xingling, S. L. James, D. M. P. Mingos, A. J. P. White, and D. J. Williams, J. Chem. Soc., Dalton Trans., 2000, 3783.

  40. J. H. K. Yip, Suwarno, and J. J. Vittal, Inorg. Chem., 2000, 39, 3537.

    Article  CAS  Google Scholar 

  41. J. Bernstein, B. Stearns, E. Shaw, and W. A. Lott, J. Am. Chem. Soc., 1947, 69, 1151.

    Article  CAS  Google Scholar 

  42. A. Deak, A. Kalman, L. Parkanyi, and I. Haiduc, Acta Crystallogr., Sect. B, 2001, 57, 303.

    Article  CAS  Google Scholar 

  43. M. Doring, M. Meinert, E. Uhlig, L. Dahlenburg, and R. Fawzi, Z. Anorg. Allg. Chem. 1991, 598/599, 71.

    Article  Google Scholar 

  44. S. S. S. Raj, F. Hoong-Kun, Zh. Pu-Su, J. Fanf-Fang, L. u-De, Y. Xu-Jie, and W. Xin, Acta Crystallogr., Sect. C, 2000, 56, 742.

    Article  Google Scholar 

  45. Z. Otwinowski and W. Minor, Proc. X-ray Diffraction Data Collected in Oscillation Mode, in Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, Eds C. W. Carter, Jr. and R. M. Sweet, Acad. Press, New York, 1997, pp. 307–326.

    Google Scholar 

  46. G. M. Sheldrick, SHELXS97, SHELXL, Program for Crystal Structure Determination, University of Göttingen, Göttingen (Germany), 1997.

    Google Scholar 

  47. L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 35–42, January, 2006.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokach, N.A., Kukushkin, V.Y., Haukka, M. et al. Co(II)-Mediated and microwave assisted coupling between 2,6-diaminopyridine and nitriles. A new synthetic route to N-(6-aminopyridin-2-yl)carboximidamides. Russ Chem Bull 55, 36–43 (2006). https://doi.org/10.1007/s11172-006-0212-4

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-006-0212-4

Key words

Navigation