Skip to main content
Log in

Mechanism and structural aspects of thermal Curtius rearrangement. Quantum chemical study

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The electronic and geometric structures of formyl, acetyl, and benzoyl azides were studied and fragments of the potential surfaces for the thermal Curtius rearrangement of these azides into the corresponding isocyanates were calculated by density functional theory at the PBE/TZ2P level. Acyl azides adopt two stable, conformations syn and anti, with respect to the C-N bond. The syn conformers are more stable than their anti analogs. The activation energies of the syn-anti isomerization in the series under study are 9.4, 7.0, and 9.2 kcal mol−1, respectively, and the activation energies of the reverse reaction are 8.5, 6.1, and 2.5 kcal mol−1. The rearrangement of syn-acyl azides is a one-step process, in which elimination of N2 occurs synchronously with the rearrangement of atoms and bonds to form isocyanates. The activation energies of the rearrangements of syn-HC(O)N3, syn-MeC(O)N3, and syn-PhC(O)N3 are 28.0, 32.9, and 34.5 kcal mol−1, respectively. The rearrangement of the anti conformers of the above-mentioned azides involves the formation of singlet acylnitrene. The activation energies of the latter process are 34.6, 32.9, and 32.3 kcal mol−1, respectively. The activation energies of the rearrangement of acylnitrenes into isocyanates are 20.9, 18.9, and 13.6 kcal mol−1, respectively. The energy characteristics of the process and the structural data for the starting compounds, final products, and transition states provide evidence that the thermal Curtius rearrangement occurs predominantly by a concerted mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Curtius, Ber., 1890, 23, 3023.

    Google Scholar 

  2. J. H. Saunders and K. C. Frisch, Polyurethanes. Chemistry and Technology, Part 1, Wiley and Sons, New York, 1962.

    Google Scholar 

  3. R. P. Tiger, Vysokomol. Soedin., Ser. B, 2004, 46, 931 [Polym. Sci., Ser. B, 2004, 46, 142 (Engl. Transl.)].

    CAS  Google Scholar 

  4. G. M. Nazin, Usp. Khim., 1972, 41, 1537 [Russ. Chem. Rev., 1972, 41, 711 (Engl. Transl.)].

    CAS  Google Scholar 

  5. W. Lwowsky, Nitrenes, Interscience, New York, 1970.

    Google Scholar 

  6. T. F. Goryainova, Yu. A. Ershov, and R. M. Livshits, Khim. Vysok. Energii, 1975, 9, 99 [High Energy Chem., 1975, 9 (Engl. Transl.)].

    CAS  Google Scholar 

  7. A. Reiser, F. W. Willits, Y. C. Terry, V. Williams, and R. Marley, Trans. Faraday Soc., 1968, 64, 3265.

    CAS  Google Scholar 

  8. T. Vamaoka, H. Kashiwagi, and S. Nagakura, Bull. Chem. Soc. Jpn, 1972, 45, 361.

    Google Scholar 

  9. J. S. Mc Conaghy, Jr. and W. Lwowsky, J. Am. Chem. Soc., 1967, 89, 4450.

    CAS  Google Scholar 

  10. M. R. Brinkman, D. Rethell, and Z. J. Hayes, Tetrahedron Lett., 1973, 989.

  11. S. Lenke, G. T. Tisue, and W. Lwowsky, J. Am. Chem. Soc., 1967, 89, 6303.

    Google Scholar 

  12. E. Leiber, C. N. R. Rao, A. E. Thomas, E. Oftedahl, R. Minnis, and C. V. N. Nambury, Spectrochim. Acta, 1963, 19, 1135.

    Google Scholar 

  13. R. H. Abu-Eittah, H. Moustafa, and A. M. Al-Omar, Chem. Phys. Lett., 2000, 318, 276.

    Article  CAS  Google Scholar 

  14. K. Yokoyama, S. Takane, and T. Fueno, Bull. Chem. Soc. Jpn, 1991, 64, 2230.

    CAS  Google Scholar 

  15. D. Poppinger, L. Radom, and J. A. Pople, J. Am. Chem. Soc., 1977, 99, 7806.

    Article  CAS  Google Scholar 

  16. A. M. Mobel, A. Luna, M. C. Lin, and K. Morokuma, J. Chem. Phys., 1996, 105, 6439.

    Google Scholar 

  17. N. Pinnavaia, M. J. Bramely, M.-D. Su, W. H. Green, and N. C. Handy, Mol. Phys., 1993, 78, 319.

    CAS  Google Scholar 

  18. A. L. L. East, C. L. Johnson, and W. D. Allen, J. Chem. Phys., 1993, 98, 1299.

    Article  CAS  Google Scholar 

  19. W. A. Shapley and G. B. Bacskay, J. Phys. Chem., 1999, 103A, 6624.

    Google Scholar 

  20. J. Koput, Chem. Phys. Lett., 1995, 242, 514.

    Article  CAS  Google Scholar 

  21. V. I. Faustov, E. G. Baskir, and A. A. Biryukov, Izv. Akad. Nauk, Ser. Khim., 2003, 2203 [Russ. Chem. Bull., Int. Ed., 2003, 52, 2328].

    Google Scholar 

  22. N. P. Gritsan and E. A. Pritchina, Mendeleev Commun., 2001, 11, 94.

    Article  Google Scholar 

  23. E. A. Pritchina, N. P. Gritsan, A. Maltsev, T. Bally, T. Autrey, Y. Liu, Y. Wang, and J. Toscano, Phys. Chem. Chem. Phys., 2003, 5, 1010.

    Article  CAS  Google Scholar 

  24. J. Liu, S. Mandel, C. M. Hadad, and M. S. Platz, J. Org. Chem., 2004, 69, 8583.

    CAS  Google Scholar 

  25. J. P. Perdew, K. Burke, and M. Ernzerhoff, Phys. Rev. Lett., 1996, 77, 3865.

    Article  CAS  Google Scholar 

  26. M. Ernzerhoff and G. E. Scuseria, J. Chem. Phys., 1999, 110, 5029.

    Google Scholar 

  27. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.

    Article  CAS  Google Scholar 

  28. R. L. Livingston and C. N. R. Rao, J. Phys. Chem., 1960, 64, 756.

    CAS  Google Scholar 

  29. D. W. W. Anderson, D. W. H. Rankin, and A. Robertson, J. Mol. Struct., 1972, 14, 385.

    Article  CAS  Google Scholar 

  30. W. M. Salathiel and R. F. Curl, J. Chem. Phys., 1966, 44, 1288.

    Article  CAS  Google Scholar 

  31. L. H. Jones, J. H. Sholery, and R. G. Shulman, J. Chem. Phys., 1950, 18, 990.

    CAS  Google Scholar 

  32. W. H. Hocking, M. C. L. Gerry, and M. Winnewisser, Can. J. Phys., 1975, 53, 1869.

    CAS  Google Scholar 

  33. J. Koput, J. Mol. Spectrosc., 1986, 115, 131.

    CAS  Google Scholar 

  34. W. Airey, C. Glidewell, A. G. Robiette, and G. M. Sheldrick, J. Mol. Struct., 1971, 8, 435.

    CAS  Google Scholar 

  35. S. P. Bondarenko, R. P. Tiger, V. L. Lebedev, and S. G. Entelis, Zh. Fiz. Khim., 1980, 54, 1370 [Russ. J. Phys. Chem., 1980, 54 (Engl. Transl.)].

    CAS  Google Scholar 

  36. D. J. am Ende, K. M. De Vries, P. J. Clifford, and S. Brenek, J. Org. Proc. Res. Dev., 1998, 2, 382.

    Google Scholar 

  37. S. G. Entelis and R. P. Tiger, Reaction Kinetics in the Liquid Phase, Wiley and Sons, New York, 1976, Ch. 5.

    Google Scholar 

  38. K. R. Brower, J. Am. Chem. Soc., 1961, 83, 4372.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2200–2209, October, 2005.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zabalov, M.V., Tiger, R.P. Mechanism and structural aspects of thermal Curtius rearrangement. Quantum chemical study. Russ Chem Bull 54, 2270–2280 (2005). https://doi.org/10.1007/s11172-006-0109-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-006-0109-2

Key words

Navigation