Skip to main content
Log in

Molecular structure and decomposition mechanism of peracetic acid esters AcOOR (R = Me, But)

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The molecular structure and conformational mobility of methyl and tert-butyl esters of peracetic acid AcOOR (R = Me (1), But (2)) were studied by the ab initio MP4(SDQ)//MP2(FC)/6-31G(d,p) method and density functional B3LYP/6-31G(d,p) approach. The B3LYP calculated equilibrium conformations of the molecules are characterized by the C-O-O-C torsion angles of 93.6° (1) and 117.0° (2). Structural features of the molecules under study and a distortion of tetrahedral bond configuration at the Cα atom were explained using the natural bonding orbital approach. The standard enthalpies of formation of AcOOMe (−328.5 kJ mol−1) and AcOOBut (−440.4 kJ mol−1) were determined using the G2 and G2(MP2) computational schemes and the isodesmic reaction approach. The transition state of AcOOMe decomposition into AcOOH and formaldehyde was calculated (E a = 122.8 kJ mol−1). The thermal effects of homolytic decomposition of the peroxy esters following a concerted mechanism (Me· + CO2 + ·OR) and simple homolysis of the peroxide bond (AcO· + ·OR) were found to be 97.5±0.3 and 155.1±0.3 kJ mol−1, respectively. At temperatures below 400 K, the most probable decomposition mechanism of peroxy esters 1 and 2 involves simple homolysis of the O-O bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. L. Antonovsky, Organicheskie perekisnye initsiatory [Organic Peroxide Initiators], Khimiya, Moscow, 1972, 448 pp. (in Russian).

    Google Scholar 

  2. D. Swern, in Organic Peroxides, Ed. D. Swern, Wiley-Intersci., New York, 1970, 1, 313.

    Google Scholar 

  3. R. R. Hiatt, L. C. Glover, and H. S. Mosher, J. Am. Chem. Soc., 1975, 97, 1556.

    Article  CAS  Google Scholar 

  4. P. Bartlett, in Peroxide Reaction Mechanisms, Ed. J. Edwards, Intersci. Publ. Inc., New York, 1961, 1.

    Google Scholar 

  5. E. T. Denisov, in General Aspects of the Chemistry of Radicals, Ed. Z. B. Alfassi, Wiley, Chichester, 1999, 79.

    Google Scholar 

  6. E. T. Denisov, Usp. Khim., 2000, 69, 166 [Russ. Chem. Rev., 2000, 69 (Engl. Transl.)].

    Google Scholar 

  7. T. S. Pokidova and E. T. Denisov, Kinet. Katal., 2001, 42, 805 [Kinet. Catal., 2001, 42 (Engl. Transl.)].

    Article  Google Scholar 

  8. V. L. Antonovsky, in Vestnik Nizhegorodskogo gos. un-ta im. N. I. Lobachevskogo [Bull. N. I. Lobachevky Nizhnii Novgorod State Univ.], Ed. V. A. Dodonov, Izd-vo NNGU, Nizhnii Novgorod, 1996, 3 (in Russian).

    Google Scholar 

  9. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    CAS  Google Scholar 

  10. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. J. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 1347.

    CAS  Google Scholar 

  11. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. Millam, M. A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98 (Revision A.3), Gaussian, Inc., Pittsburgh (PA), 1998.

    Google Scholar 

  12. A. E. Reed, L. A. Curtiss, and F. Weinhold, Chem. Rev., 1988, 88, 899.

    Article  CAS  Google Scholar 

  13. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.

    Google Scholar 

  14. L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys., 1991, 94, 7221.

    Article  CAS  Google Scholar 

  15. L. A. Curtiss, K. Raghavachari, and J. A. Pople, J. Chem. Phys., 1993, 98, 1293.

    Article  CAS  Google Scholar 

  16. S. L. Khursan and V. L. Antonovsky, Dokl. Akad. Nauk, 2002, 382, 657 [Dokl. Chem., 2002 (Engl. Transl.)].

    Google Scholar 

  17. S. L. Khursan and V. L. Antonovsky, Izv. Akad. Nauk. Ser. Khim., 2003, 1241 [Russ. Chem. Bull., Int. Ed., 2003, 52, 1312].

  18. V. L. Antonovsky and K. V. Bozhenko, Dokl. Akad. Nauk, 1995, 343, 337 [Dokl. Chem., 1995 (Engl. Transl.)].

    Google Scholar 

  19. V. L. Antonovsky, K. V. Bozhenko, and D. Kh. Kitaeva, Izv. Akad. Nauk, Ser. Khim., 1998, 600 [Russ. Chem. Bull., 1998, 47, 578 (Engl. Transl.)].

  20. Y. L. Slovokhotov, T. V. Timofeeva, M. Y. Antipin, and Y. T. Struchkov, J. Mol. Struct., 1984, 112, 127.

    Article  CAS  Google Scholar 

  21. S. L. Khursan and V. L. Antonovsky, Izv. Akad. Nauk, Ser. Khim., 2003, 1809 [Russ. Chem. Bull., Int. Ed., 2003, 52, 1908].

  22. A. Yu. Kosnikov, V. L. Antonovskii, N. A. Turovskii, S. V. Lindeman, T. V. Timofeeva, Yu. T. Struchkov, and I. P. Zyat’kov, Izv. Akad. Nauk SSSR. Ser. Khim., 1988, 791 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1988, 37, 674 (Engl. Transl.)].

  23. A. J. Kirby, The Anomeric Effect and Related Stereoelectronic Effects at Oxygen, Springer Verlag, Berlin—Heidelberg—New York, 1983.

    Google Scholar 

  24. W. G. Mallard and P. J. Linstrom, NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg (MD 20899), February 2000.

    Google Scholar 

  25. NIST Standard Reference Database 19A. Positive Ion Energetics. Version 2.02, National Institute of Standards and Technology, Gaithersburg, 1994.

  26. M. W. Chase, J. Phys. Chem. Ref. Data, 1998, 9, 1.

    Google Scholar 

  27. S. W. Benson, Oxid. Commun., 1982, 2, 169.

    CAS  Google Scholar 

  28. V. L. Antonovsky, Kinet. Katal., 1995, 36, 370 [Kinet. Catal., 1995, 36 (Engl. Transl.)].

    Google Scholar 

  29. S. W. Benson, Thermochemical Kinetics, Wiley, New York, 1976.

    Google Scholar 

  30. R. G. Gilbert and S. C. Smith, Theory of Unimolecular and Recombination Reactions, Blackwell Sci. Publ., Oxford, 1990.

    Google Scholar 

  31. T. Mill, F. Mayo, H. Richardson, K. Irwing, and D. L. Allara, J. Am. Chem. Soc., 1972, 94, 6802.

    Article  CAS  Google Scholar 

  32. G. A. Russell, J. Am. Chem. Soc., 1957, 79, 3871.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 2021–2027, October, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khursan, S.L., Antonovsky, V.L. Molecular structure and decomposition mechanism of peracetic acid esters AcOOR (R = Me, But). Russ Chem Bull 53, 2109–2116 (2004). https://doi.org/10.1007/s11172-005-0081-2

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-005-0081-2

Key words

Navigation