Skip to main content
Log in

Hydrogen bonding in ε-caprolactam dimer: a quantum-chemical study

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The equilibrium geometries, vibrational frequencies, and IR band intensities were calculated for the monomer and hydrogen-bonded cyclic dimer of ε-caprolactam (1) by the density functional B3LYP/6-311++G(d,p) method and compared with the experimental data. The gas phase IR spectrum of monomer of 1 was first measured. The calculated hydrogen bonding enthalpy ΔH/2 in the hydrogen-bonded dimer in the gas phase (–5.93 kcal/mol) is consistent with the published data. The computed scaled (scaling factor 0.97) vibrational frequencies of the monomer and dimer are in good agreement with the experimental data. The geometry of the ε-caprolactam monomer remains nearly unchanged in its dimer except for the N-H, C-O, and C-N bond lengths that respectively change from 1.012, 1.230, and 1.369 Å in the former to 1.029, 1.246, and 1.350 Å in the latter. The frequencies, eigenvectors, and IR intensities of the amide modes of the monomer and dimer differ dramatically. The calculated νNH and νCO frequency shifts due to hydrogen bonding are in good agreement with the experimental data, but theoretical intensification of the νNH IR band is much greater than that observed experimentally (by nearly 69 times vs. 11 times, respectively). The calculated N...O intermolecular distance in the structure of ε-caprolactam dimer equals the experimental value (2.89 Å). The influence of the basis set employed on the results of calculations is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. N. Panchenko, Izv. Akad. Nauk, Ser. Khim., 1996, 800 [Russ. Chem. Bull., 1996, 45, 753 (Engl. Transl.)].

  2. J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods, Pittsburg (PA), 1996, Ch. 4, p. 64.

  3. J. Palomar, J. L. G. De Paz, and J. Catalan, Chem. Phys., 1999, 246, 167

    Article  CAS  Google Scholar 

  4. S. Scheiner, Hydrogen bonding. A Theoretical perspective, Oxford University Press, New York—Oxford, 1997 (a) Ch. 1.3.2; (b) Chs. 1.5 and 1.6.

    Google Scholar 

  5. S. K. Madan and J. A. Sturr, Inorg. Chem., 1967, 6, 421.

    Article  CAS  Google Scholar 

  6. Kh. Kh. Khakimov, in Reaktsionnaya sposobnost’ koordinatsionnykh soedinenii [Reactivity of Coordination Compounds], Nauka, Moscow, 1976, p. 156 (in Russian).

    Google Scholar 

  7. A. Aarna, K. Kijsler, and P. Krist’yanson, in Tr. I Vses. Konf. po Kleyam i Tekhnologii Skleivaniya [Proc. Ist All-Union Conf. on Glues and Glueing Technology], Izd. Tallin Polytechnic Institute, Tallin, 1966, p. 43 (in Russian).

    Google Scholar 

  8. A. Aarna, P. Krist’yanson, and Kh. Oya, Izv. Akad. Nauk Est. SSR, Khim. Geol. [Bull. Acad. Sci. Est. SSR. Chem. and Geol. Series], 1970, 19, 121 (in Russian).

    Google Scholar 

  9. F. K. Winkler and J. D. Dunitz, Acta Crystallogr., 1973, B29, 154.

    Google Scholar 

  10. Kh. P. Oya and R. M. Myasnikova, Zh. Strukt. Khim., 1974, 15, 679 [J. Struct. Chem. USSR, 1974, 15 (Engl. Transl.)].

    Google Scholar 

  11. C. Y. S. Chen and C. A. Swenson, J. Phys. Chem., 1989, 73, 2999.

    Article  Google Scholar 

  12. A. V. Iogansen, G. A. Kurchi, and B. V. Rassadin, Zh. Prikl. Spektroscopii., 1969, 11, 1055 [J. Appl. Spectr. USSR, 1969, 11 (Engl. Transl.)].

    Google Scholar 

  13. A. V. Iogansen, Spectrochimica Acta, Part A, 1999, 55, 1585.

    Google Scholar 

  14. L. A. Dement’ev, A. V. Iogansen, and G. A. Kurchi, Opt. i Spektrosk [Optics and Spectroscopy], 1970, 29, 868 (in Russian).

    Google Scholar 

  15. M. Laznewski and J. Mokrzan, Z. Phys. Chem., 1967, 235.

  16. R. C. Lord and T. J. Porro, Z. Elektrochem., 1960, 64, 672.

    CAS  Google Scholar 

  17. A. Aihara, Bull. Chem. Soc. Jpn, 1960, 33, 1188.

    CAS  Google Scholar 

  18. B. Schrader, Raman/Infrared Atlas of Organic Compounds, 2nd ed., VCH, 1989, I16–02.

  19. T. I. Novikova, L. G. Kovalenko, N. V. Labinskaya, and Yu. N. Nizel’skii, Ukr. Khim. Zh. [Ukr. Chem. J.], 1982, Issue 10, 48 (in Russian).

  20. A. Warshel, M. Levitt, and S. Lifson, J. Mol. Spectrosc., 1970, 33, 84.

    Article  CAS  Google Scholar 

  21. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules, Wiley, New York; Methuen and Co., London, 1957.

    Google Scholar 

  22. N. E. Triggs and J. J. Valentini, J. Phys. Chem., 1992, 96, 6922.

    Article  CAS  Google Scholar 

  23. N. E. Triggs, R. T. Bonn, and J. J. Valentini, J. Phys. Chem., 1993, 97, 5535.

    Article  CAS  Google Scholar 

  24. Kh. P. Oya and R. M. Myasnikova, Zh. Strukt. Khim., 1973, 14, 1094 [J. Struct. Chem. USSR, 1973, 14 (Engl. Transl.)].

    Google Scholar 

  25. G. Pimentel and A. L. McClellan, The Hydrogen Bond, Ed. L. Pauling, San Francisco—London, 1960.

  26. A. Winkler and P. Hess, J. Am. Chem. Soc., 1994, 116, 9233.

    Article  CAS  Google Scholar 

  27. V. A. Sipachev, J. Mol. Struct. (Theochem.), 1985, 121, 143.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1818–1825, September, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garbuzova, I.A., Lokshin, B.V. Hydrogen bonding in ε-caprolactam dimer: a quantum-chemical study. Russ Chem Bull 53, 1894–1902 (2004). https://doi.org/10.1007/s11172-005-0047-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-005-0047-4

Key words

Navigation