Skip to main content
Log in

Multiple template switches on LINE-directed reverse transcription: The most probable formation mechanism for the double and triple chimeric retroelements in mammals

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

It was shown that the shuffling mechanism for transcribed genome components, which involves a template switch during the RNA reverse transcription using the L1 retroelement enzymatic machinery, is common in mammals. The occurrence frequency of the resulting chimeric retroelements in the genomes of rodents is twice as high as in the DNA of primates. Moreover, we proved that not only single but also double switches may occur in vivo, which result in the fusion of copies of three different transcripts. Many of the identified chimeras are transcribed in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

EST:

expressed sequence tag

LINE:

long interspersed nuclear elements

ORF:

open reading frame

SINE:

short interspersed nuclear elements

snRNA:

small nuclear RNA

REFERENCES

  1. Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., et al., Science, 2001, vol. 291, pp. 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  2. International Human Genome Sequencing Consortium, Nature, 2001, vol. 409, pp. 860–921.

    Google Scholar 

  3. Buzdin, A., Ustyugova, S., Gogvadze, E., Lebedev, Y., Hunsmann, G., and Sverdlov, E., Hum. Genet., 2003, vol. 112, pp. 527–533.

    Google Scholar 

  4. Kazazian, H.H., Science, 2000, vol. 289, pp. 1152–1153.

    Google Scholar 

  5. Ovchinnikov, I., Troxel, A.B., and Swergold, G.D., Genome Res., 2001, vol. 11, pp. 2050–2058.

    Google Scholar 

  6. Furano, A.V., Prog. Nucleic Acid Res. Mol. Biol., 2000, vol. 64, pp. 255–294.

    Google Scholar 

  7. Brouha, B., Schustak, J., Badge, R.M., Lutz-Prigge, S., Farley, A.H., Moran, J.V., and Kazazian, H.H., Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 5280–5285.

    Google Scholar 

  8. Hohjoh, H. and Singer, M.F., EMBO J., 1996, vol. 15, pp. 630–639.

    Google Scholar 

  9. Kolosha, V.O. and Martin, S.L., J. Biol. Chem., 2003, vol. 278, pp. 8112–8117.

    Google Scholar 

  10. Wei, W., Gilbert, N., Ooi, S.L., Lawler, J.F., Ostertag, E.M., Kazazian, H.H., Boeke, J.D., and Moran, J.V., Mol. Cell. Biol., 2001, vol. 21, pp. 1429–1439.

    Google Scholar 

  11. Dewannieux, M., Esnault, C., and Heidmann, T., Nat. Genet., 2003, vol. 35, pp. 41–48.

    Google Scholar 

  12. Esnault, C., Maestre, J., and Heidmann, T., Nat. Genet., 2000, vol. 24, pp. 363–367.

    Google Scholar 

  13. Buzdin, A., Gogvadze, E., Kovalskaya, E., Volchkov, P., Ustyugova, S., Illarionova, A., Fushan, A., Vinogradova, T., and Sverdlov, E., Nucleic Acids Res., 2003, vol. 31, pp. 4385–4390.

    Google Scholar 

  14. Jurka, J., Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 1872–1877.

    Google Scholar 

  15. Buzdin, A., Ustyugova, S., Gogvadze, E., Vinogradova, T., Lebedev, Y., and Sverdlov, E., Genomics, 2002, vol. 80, pp. 402–406.

    Google Scholar 

  16. Mouse Genome Sequencing Consortium, Nature, 2002, vol. 420, pp. 520–562.

    Google Scholar 

  17. Bibillo, A. and Eickbush, T.H., J. Mol. Biol., 2002, vol. 316, pp. 459–473.

    Google Scholar 

  18. Jamain, S., Girondot, M., Leroy, P., Clergue, M., Quach, H., Fellous, M., and Bourgeron, T., Genomics, 2001, vol. 78, pp. 38–45.

    Google Scholar 

  19. Negroni, M. and Buc, H., Ann. Rev. Genet., 2001, vol. 35, pp. 275–302.

    Google Scholar 

  20. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J., J. Mol. Biol., 1990, vol. 215, pp. 403–410.

    Google Scholar 

  21. Thompson, J.D., Higgins, D.G., and Gibson, T.J., Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Buzdin.

Additional information

Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 82–89.

Original Russian Text Copyright © 2005 by Gogvadze, Buzdin, Sverdlov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogvadze, E.V., Buzdin, A.A. & Sverdlov, E.D. Multiple template switches on LINE-directed reverse transcription: The most probable formation mechanism for the double and triple chimeric retroelements in mammals. Russ J Bioorg Chem 31, 74–81 (2005). https://doi.org/10.1007/s11171-005-0010-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11171-005-0010-z

Key words

Navigation