Skip to main content
Log in

Cationic oligopeptides modified with lipophilic fragments: Use for DNA delivery to cells

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

Cationic oligopeptides, including the amphipathic α-helical peptides, are applied to the targeted delivery of DNA to eukaryotic cells due to their DNA-compacting properties and the ability to destabilize the cell lipid bilayer in some cases. We synthesized the peptides differing in the number and location of residues of decanoic acid covalently attached to Lys residues in order to combine the DNA-binding and the membrane activities in a single molecule. We chose peptide structures that assisted in the formation of α helices. The DNA-binding ability of the peptides and the membrane activity of their complexes with DNA were shown to depend on the structure. The study of erythrocyte hemolysis by complexes with DNA of the pCMV LacZ plasmid and the peculiarities of transfection of these complexes revealed a correlation between the hemolytic activity and the expression level of the lacZ gene in cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Acm:

acetamidomethyl

Ahx:

residue of ε-amino-caproic acid

DIC:

diisopropylcarbodiimide

TFA:

trifluoroacetic acid

TFE:

trifluoroethanol.

REFERENCES

  1. Gariepy, J. and Kawamura, K., Trends Biotechnol., 2001, vol. 19, pp. 21–28.

    Google Scholar 

  2. Singh, D., Kiarash, R., Kawamura, K., LaCasse, E.C., and Gariepy, J., Biochemistry, 1998, vol. 37, pp. 5798–5809.

    Google Scholar 

  3. Morris, M.C., Chaloin, L., Heitz, F., and Divita, G., Curr. Opin. Biotechnol., 2000, vol. 11, pp. 461–466.

    Article  Google Scholar 

  4. Niidome, T., Anzai, Sh., Sonoda, J., Tokunaga, Y., Nakahara, M., Hatakeyama, T., and Ayoagi, H., J. Pept. Sci., 1999, vol. 5, pp. 298–305.

    Google Scholar 

  5. Singh, D., Bisland, S.K., Kawamura, K., and Gariepy, J., Bioconjug. Chem., 1999, vol. 10, pp. 745–754.

    Google Scholar 

  6. Duguid, J.G., Li, C., Shi, M., Logan, M.J., Alila, H., Rolland, A., Tomlinson, E., Sparrow, J.T., and Smith, L.C., Biophys. J., 1998, vol. 74, pp. 2802–2814.

    Google Scholar 

  7. Rittner, K., Benavente, A., Bombard-Sorlet, A., Heitz, F., Divita, G., Brasseur, R., and Jacobs, E., Mol. Ther., 2002, vol. 5, pp. 104–114.

    Google Scholar 

  8. Vaysse, L. and Arveiler, B., Biochem. Biophys. Acta, 2000, vol. 1474, pp. 244–250.

    Google Scholar 

  9. Sheldon, K., Liu, D., Ferguson, J., and Gariepy, J., Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 2056–2060.

    Google Scholar 

  10. Zelphati, O., Uyechi, L.S., Barron, L.G., and Szoca, F.C., Biochem. Biophys. Acta, 1998, vol. 1390, pp. 119–133.

    Google Scholar 

  11. Nir, Sh. and Nieva, J., Prog. Lipid Res., 2000, vol. 39, pp. 181–206.

    Google Scholar 

  12. Liu, L.-P., Li, Sh.-Ch., Goto, N.K., and Deber, Ch.M., Biopolymers, 1996, vol. 39, pp. 465–470.

    Google Scholar 

  13. Scott, E.S., Wiseman, J.W., Evans, M.J., and Colledge, W.H., J. Gene Med., 2001, vol. 3, pp. 125–134.

    Google Scholar 

  14. Niidome, T., Urakava, M., Takaji, K., Matsuo, Y., Ohmori, N., Wada, A., Hirayama, T., and Aoyagi, H., J. Pept. Res., 1999, vol. 54, pp. 361–367.

    Google Scholar 

  15. Deber, Ch.M. and Li, Sh.-Ch., Biopolymers, 1995, vol. 37, pp. 295–318.

    Google Scholar 

  16. Cornut, I., Buttner, K., Dasseux, J.-L., and Dufourcq, J., FEBS Lett., 1994, vol. 349, pp. 29–33.

    Google Scholar 

  17. Ohmori, N., Niidome, T., Hatakeyama, T., Mihara, H., and Aoyagi, H., J. Pept. Res., 1998, vol. 51, pp. 103–109.

    Google Scholar 

  18. Niidome, T., Wakamatsu, M., Wada, A., Hirayama, T., and Aoyagi, H., J. Pept. Sci., 2000, vol. 6, pp. 271–279.

    Google Scholar 

  19. Marqusee, S. and Baldwin, R.L., Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 8898–8902.

    Google Scholar 

  20. Gottschalk, S., Sparrow, J.T., Hauer, J., Mims, M.P., Leland, F.E., Woo, S.L.C., and Smith, L.C., Gene Therapy, 1996, vol. 3, pp. 448–457.

    Google Scholar 

  21. Huang, Ch.-Y., Uno, T., Murphy, J.E., Lee, S., Hamer, J.D., Escobedo, J.A., Cohen, F.E., Radhakrishnan, R., Dwarki, V., and Zuckermann, R.N., Chem. Biol., 1998, vol. 5, pp. 345–354.

    Google Scholar 

  22. Ohsaki, M., Okuda, T., Wada, A., Hirayama, T., Niidome, T., and Aoyagi, H., Bioconjug. Chem., 2002, vol. 13, pp. 510–517.

    Google Scholar 

  23. Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Lab., 1982. Translated under the title Molekulyarnoe klonirovanie, Moscow: Mir, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Guryanov.

Additional information

Translated from Bioorganicheskaya Khimiya, Vol. 31, No. 1, 2005, pp. 22–30.

Original Russian Text Copyright © 2005 by Guryanov, Vlasov, Lesina, Kiselev, Baranov, Avdeeva, Vorob’ev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guryanov, I.A., Vlasov, G.P., Lesina, E.A. et al. Cationic oligopeptides modified with lipophilic fragments: Use for DNA delivery to cells. Russ J Bioorg Chem 31, 18–26 (2005). https://doi.org/10.1007/s11171-005-0002-z

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11171-005-0002-z

Key words

Navigation