Anderson J. R., Schooler L. J. (2000) The adaptive nature of memory. In: Tulving E., Craik F. I. M. (eds) The Oxford handbook of memory. Oxford University Press, Oxford, pp 557–570
Google Scholar
Bernstein-Ratner N. (1984) Patterns of vowel modification in motherese. Journal of Child Language 11: 557–578
Google Scholar
Blanchard D., Heinz J., Golinkoff R. (2010) Modeling the contribution of phonotactic cues to word segmentation. Journal of Child Language 27: 487–511
Article
Google Scholar
Brent M. (1999) An efficient, probabilistically sound algorithm for segmentation and word discovery. Machine Learning 34: 71–105
Article
Google Scholar
Brown S., Steyvers M. (2009) Detecting and predicting changes. Cognitive Psychology 58: 49–67
Article
Google Scholar
Christiansen M., Allen J., Seidenberg M. (1998) Learning to segment speech using multiple cues: A connectionist model. Language and Cognitive Processes 13: 221–268
Article
Google Scholar
Curtin S., Mintz T., Christansen M. (2005) Stress changes the representational landscape: Evidence from word segmentation in infants. Cognition 96: 233–262
Article
Google Scholar
Ferguson T. (1973) A Bayesian analysis of some nonparametric problems. Annals of Statistics 1: 209–230
Article
Google Scholar
Fleck, M. (2008). Lexicalized phonotactic word segmentation. In Proceedings of the association for computational linguistics (pp. 130–138).
Frank M. C., Goodman N. D., Tenenbaum J. (2009) Using speakers’ referential intentions to model early cross-situational word learning. Psychological Science 20: 579–585
Article
Google Scholar
Gambell T., Yang C. (2006) Word segmentation: Quick but not dirty. Manuscript. Yale University, New Haven
Google Scholar
Griffiths T. L., Chater N., Kemp C., Perfors A., Tenenbaum J. B. (2010) Probabilistic models of cognition: Exploring representations and inductive biases. Trends in Cognitive Sciences 14: 357–364
Article
Google Scholar
Griffiths T. L., Kemp C., Tenenbaum J. B. (2008) Bayesian models of cognition. In: Sun Ron (Ed.) The Cambridge handbook of computational cognitive modeling. Cambridge University Press, Cambridge
Google Scholar
Griffiths T. L., Tenenbaum J. B. (2005) Structure and strength in causal induction. Cognitive Psychology 51: 354–384
Article
Google Scholar
Goldwater (2006). Nonparametric Bayesian models of lexical acquisition. Ph.D. thesis, Brown University.
Goldwater S., Griffiths T., Johnson M. (2007) Distributional cues to word boundaries: Context is important. In: Caunt-Nulton H., Kulatilake S., Woo I. (eds) BUCLD 31: Proceedings of the 31st annual Boston university conference on language development. Cascadilla Press, Somerville, MA, pp 239–250
Google Scholar
Goldwater S., Griffiths T.L., Johnson M. (2009) A Bayesian framework for word segmentation: Exploring the effects of context. Cognition 112(1): 21–54
Article
Google Scholar
Hewlett, D., & Cohen, P. (2009). Bootstrap voting experts. In Proceedings of the twenty-first international joint conference on artificial intelligence (IJCAI-09) (pp. 1071–1076). Available at http://www.ijcai.org/papers09/contents.php.
Johnson E., Jusczyk P. (2001) Word segmentation by 8-month-olds: When speech cues count more than statistics. Journal of Memory and Language 44: 548–567
Article
Google Scholar
Johnson, M., Griffiths, T., & Goldwater, S. (2007). Bayesian inference for PCFGs via Markov Cain Monte Carlo. In Proceedings of the meeting of the North American association for computational linguistics.
Jusczyk P., Goodman M., Baumann A. (1999a) Nine-month-olds’ attention to sound similarities in syllables. Journal of Memory & Language 40: 62–82
Article
Google Scholar
Jusczyk P., Hohne E., Baumann A. (1999b) Infants’ sensitivity to allophonic cues for word segmentation. Perception and Psychophysics 61: 1465–1476
Article
Google Scholar
Juszcyk P., Houston D., Newsome M. (1999c) The beginnings of word segmentation in English-learning infants. Cognitive Psychology 39: 159–207
Article
Google Scholar
MacWhinney B. (2000) The CHILDES project: Tools for analyzing talk. Lawrence Erlbaum Associates, Mahwah, NJ
Google Scholar
Marr D. (1982) Vision. Freeman, San Francisco
Google Scholar
Marthi, B., Pasula, H., Russell, S., & Peres, Y., et al. (2002). Decayed MCMC Filtering. In Proceedings of 18th UAI (pp. 319–326).
Mattys S., Jusczyk P., Luce P., Morgan J. (1999) Phonotactic and prosodic effects on word segmentation in infants. Cognitive Psychology 38: 465–494
Article
Google Scholar
McClelland J. L., Botvinick M. M., Noelle D. C., Plaut D. C., Rogers T. T., Seidenberg M. S., Smith L. B. (2010) Letting structure emerge: Connectionist and dynamical systems approaches to understanding cognition. Trends in Cognitive Sciences 14: 348–356
Article
Google Scholar
Morgan J., Bonamo K., Travis L. (1995) Negative evidence on negative evidence. Developmental Psychology 31: 180–197
Article
Google Scholar
Newport E. (1990) Maturational constraints on language learning. Cognitive Science 14: 11–28
Article
Google Scholar
Oaksford M., Chater N. (1998) Rational models of cognition. Oxford University Press, Oxford, England
Google Scholar
Pelucchi B., Hay J., Saffran J. (2009) Learning in reverse: Eight-month-old infants track backward transitional probabilities. Cognition 113: 244–247
Article
Google Scholar
Perruchet P., Desaulty S. (2008) A role for backward transitional probabilities in word segmentation?. Memory and Cognition 36: 1299–1305
Article
Google Scholar
Peters A. (1983) The Units of Language Acquisition, Monographs in Applied Psycholinguistics. Cambridge University Press, New York
Google Scholar
Saffran J., Aslin R., Newport E. (1996) Statistical learning by 8-month-olds. Science 274: 1926–1928
Article
Google Scholar
Saffran J. R. (2001) The use of predictive dependencies in language learning. Journal of Memory and Language 44: 493–513
Article
Google Scholar
Sanborn, A. N., Griffiths, T. L., & Navarro, D. J. (in press). Rational approximations to rational models: Alternative algorithms for category learning. Psychological Review.
Seidl A., Johnson E. (2006) Infant word segmentation revisited: Edge alignment facilitates target extraction. Developmental Science 9(6): 565–573
Article
Google Scholar
Shi, L., Griffiths, T. L., Feldman, N. H., & Sanborn, A. N. (in press). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review.
Swingley D. (2005) Statistical clustering and contents of the infant vocabulary. Cognitive Psychology 50: 86–132
Article
Google Scholar
Teh Y., Jordan M., Beal M., Blei D. (2006) Hierarchical Dirichlet processes. Journal of the American Statistical Association 101(476): 1566–1581
Article
Google Scholar
Tenenbaum J., Griffiths T. (2001) Generalization, similarity, and Bayesian inference. Behavioral and Brain Sciences 24: 629–641
Google Scholar
Tenenbaum J., Griffiths T., Kemp C. (2006) Theory-based models of inductive learning and reasoning. Trends in Cognitive Sciences 10: 309–318
Article
Google Scholar
Thiessen E., Saffran J. R. (2003) When cues collide: Use of stress and statistical cues to word boundaries by 7- to 9-month-old infants. Developmental Psychology 39: 706–716
Article
Google Scholar
Xu F., Tenenbaum J. B. (2007) Word learning as Bayesian inference. Psychological Review 114: 245–272
Article
Google Scholar