Skip to main content
Log in

Application of the Hole Group Quasi-Chemical Model to Evaluation of Azeotropic Properties

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Azeotropic parameters (composition, boiling point, equilibrium pressure) were calculated in terms of the Viktorov-Smirnova lattice-hole quasi-chemical group model for binary and ternary systems in which there is no stratification of solutions formed by various components (hydrocarbons, alkanols, acetic acid, ethanoates, chloroform, acetone, pyridine, and water). Azeotropes of various kinds (positive, negative, saddle-type) were found using simple algorithms, including composition variation. Thirty binary, nine ternary, and one quaternary systems were considered. New group parameters were evaluated. The results of calculations of azeotropes were compared with published experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Storonkin, A.V., Termodinamika geterogennykh sistem (Thermodynamics of Heterogeneous Systems), Leningrad: Khimiya, 1967, parts 1, 2.

    Google Scholar 

  2. Morachevskii, A.G., Smirnova, N.A., Piotrovskaya, E.M., et al., Termodinamika ravnovesiya zhidkost'-par (Thermodynamics of the Liquid-Vapor Equilibrium), Leningrad, 1989.

  3. Viktorov, A.I., Kuranov, G.L., Morachevskii, A.G., and Smirnova, N.A., Zh. Prikl. Khim., 1991, vol. 64, no.5, pp. 961–978.

    Google Scholar 

  4. IUPAC, vol. V: Equations of State for Fluids and Fluid Mixtures, Sengers, J.V., Kayser, R.F., Peters, C.J., and White, H.J., Eds., Amsterdam: Elsevier, 2000, parts 1, 2.

    Google Scholar 

  5. Aristovich, V.Yu. and Stepanova, E.I., Zh. Prikl. Khim., 1970, vol. 43, no.10, pp. 2192–2200.

    Google Scholar 

  6. Moracevski, A.G. and Pukinskij, I.B., Modellierung von Phasengleichgewichten als Grundlage von Stofftrennprozessen (in German), Berlin: Akademie, 1981, pp. 295–328.

    Google Scholar 

  7. Tamir, A., Apelblat, A., and Wagner, M.,. Fluid Phase Equilib., 1981, vol. 6, pp. 113–139.

    Article  Google Scholar 

  8. Demirel, Y., Fluid Phase Equilib., 1993, vol. 86, pp. 1–13.

    Article  Google Scholar 

  9. Harding, S.T., Maranas, C.D., McDonald, C.M., and Floudas, C.A., Ind. Eng. Chem. Res., 1997, vol. 36, pp. 160–178.

    Article  Google Scholar 

  10. Maier, R.W., Brennecke, J.F., and Stadtherr, M.A., Am. Iust. Chem. Eng. J., 1998, vol. 44, pp. 1745–1755.

    Google Scholar 

  11. Hua, J.Z., Maier, R.W., Tessier, S.R., et al. Fluid Phase Equilib., 1999, vol. 158–160, pp. 607–615.

    Article  Google Scholar 

  12. Maier, R.W., Brennecke, J.F., and Stadtherr, M.A., Comput. Chem. Eng., 2000, vol. 24, pp. 1851–1861.

    Article  Google Scholar 

  13. Wang, S.-H. and Whiting, W.B., Ind. Eng. Chem. Proc. Des. Dev., 1986, vol. 25, pp. 547–551.

    Article  Google Scholar 

  14. Chen, S.-F., Chen, Y.-P., and Tang, M., J. Chem. Eng. Japan, 1994, vol. 27, pp. 512–516.

    Article  Google Scholar 

  15. Segura, H., Wisniak, J., Toledo, P.G., and Mejia, A., Fluid Phase Equilib., 1999, vol. 166, pp. 141–162.

    Article  Google Scholar 

  16. Aslam, N. and Sunol, A.K., Chem. Eng. Sci., 2004, vol. 59, pp. 599–609.

    Article  Google Scholar 

  17. Smirnova, N.A. and Victorov, A.I., IUPAC, vol. V: Equations of State for Fluids and Fluid Mixtures, Amsterdam: Elsevier, 2000, pp. 255–288.

    Google Scholar 

  18. Smirnova, N.A. and Victorov, A.I., Fluid Phase Equilib., 1987, vol. 34, pp. 235–263.

    Article  Google Scholar 

  19. Prikhodko, I.V., Shmel'tser, Yu., Viktorov, A.I., and Smirnova, N.A., Zh. Prikl. Khim., 1989, vol. 62, no.12, pp. 2738–2744.

    Google Scholar 

  20. Victorov, A.I. and Fredenslund, A., Fluid Phase Equilib., 1991, vol. 66, pp. 77–101.

    Article  Google Scholar 

  21. Deak, A., Victorov, A.I., and de Loos, Th.W., Fluid Phase Equilib., 1995, vol. 107, pp. 277–301.

    Article  Google Scholar 

  22. Prikhodko, I.V., Victorov, A.I., Smirnova, N.A., and de Loos, Th.W., Fluid Phase Equilib., 1995, vol. 110, pp. 17–30.

    Article  Google Scholar 

  23. Viktorov, A.I., Morachevskii, A.G., Prikhodko, I.V., and Smirnova, N.A., Vestn. SPb. Gos. Univ., Ser. 4, 1995, no. 3, pp. 24–32.

  24. Prikhodko, I.V., Letcher, T.M., and de Loos, Th.W., Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4391–4396.

    Article  Google Scholar 

  25. Prikhodko, I.V. and Vinogradova, I.V., Zh. Prikl. Khim., 2002, vol. 75, no.11, pp. 1810–1815.

    Google Scholar 

  26. Chudakov, A.M., Vinogradova, I.V., and Prikhod'ko, I.V., Vestnik SPb. Gos. Univ., Ser. 4, 2004, issue 1, no. 4, pp. 53–69.

    Google Scholar 

  27. Bondi, A., Physical Properties of Molecular Crystals, Liquids and Glasses, New York: Willey, 1968.

    Google Scholar 

  28. Smith, B.D. and Srivastava, R., Thermodynamic Data for Pure Compounds: Physical Sciences Data, parts A, B, Amsterdam: Elsevier, 1986.

    Google Scholar 

  29. Kogan, V.B., Fridman, V.M., and Kafarov, V.V., Ravnovesie mezhdu zhidkost'yu i parom (Liquid-Vapor Equilibrium), Moscow: Nauka, 1966, vols. 1, 2.

    Google Scholar 

  30. Kurihara, K., Hori, H., and Kojima, K., J. Chem. Eng. Data, 1998, vol. 43, pp. 264–268.

    Article  Google Scholar 

  31. Nagata, I. and Hayashida, H., J. Chem. Eng. Japan, 1970, vol. 3, pp. 161–166.

    Google Scholar 

  32. Hiaki, T., Kurihara, K., and Kojima, K., J. Chem. Eng. Data, 1994, vol. 39, pp. 714–719.

    Article  Google Scholar 

  33. Goral, M., Kolasin'ska, G., and Oracz, P., Fluid Phase Equilib., 1985, vol. 23, pp. 89–116.

    Article  Google Scholar 

  34. Lyudmirskaya, G.S., Barsukova, T.A., and Bogomol'nyi, A.M., Ravnovesie zhidkost'-par: Spravochnik (Liquid-Vapor Equilibrium: Reference Book), Leningrad, 1987.

  35. Bekarek, V., Collect. Czech. Chem. Commun., 1968, vol. 33, pp. 2608–2619.

    Google Scholar 

  36. Ogorodnikov, S.K., Lesteva, T.M., and Kogan, V.B., Azeotropnye smesi: Spravochnik (Azeotropic Mixtures: Reference Book), Leningrad: Khimiya, 1971.

    Google Scholar 

  37. Pivovarov, A.M., Marinichev, A.N., and Susarev, M.P., Vestn. Len. Gos. Univ., Fiz. Khim., 1976, issue 1, pp. 100–105.

  38. Gmehling, J., Menke, J., Krafczyk, J., and Fischer, K., Azeotropic Data, Weinheim: VCH, Germany, 1994, parts I, II.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Prikladnoi Khimii, Vol. 78, No. 8, 2005, pp. 1258–1267.

Original Russian Text Copyright © 2005 by Prikhodko, Chudakov.

Reported at the XVI International Congress on Chemical Technology, CHISA2004, Prague, Czechia, August 22–26, 2004.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prikhodko, I.V., Chudakov, A.M. Application of the Hole Group Quasi-Chemical Model to Evaluation of Azeotropic Properties. Russ J Appl Chem 78, 1235–1244 (2005). https://doi.org/10.1007/s11167-005-0489-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11167-005-0489-3

Keywords

Navigation