Journal of Risk and Uncertainty

, Volume 56, Issue 3, pp 259–287 | Cite as

Estimating representations of time preferences and models of probabilistic intertemporal choice on experimental data

  • Pavlo R. BlavatskyyEmail author
  • Hela Maafi


We here estimate a number of alternatives to discounted-utility theory, such as quasi-hyperbolic discounting, generalized hyperbolic discounting, and rank-dependent discounted utility with three different models of probabilistic choice. The data come from a controlled laboratory experiment designed to reveal individual time preferences in two rounds of 100 binary-choice problems. Rank-dependent discounted utility and its special case—the maximization of present discounted value—turn out to be the best-fitting theory (for about two-thirds of all subjects). For a great majority of subjects (72%), the representation of time preferences in Luce’s choice model provides the best fit.


Intertemporal choice Time preference Discounted utility Quasi-hyperbolic discounting Rank-dependent discounted utility 

JEL Classification



  1. Abdellaoui, M., Bleichrodt, H., & l’Haridon, O. (2013). Sign-dependence in intertemporal choice. Journal of Risk and Uncertainty, 47(3), 225–253.CrossRefGoogle Scholar
  2. Andersen, S., Harrison, G. W., Lau, M. I., & Rutström, E. E. (2008). Eliciting risk and time preferences. Econometrica, 76(3), 583–618.CrossRefGoogle Scholar
  3. Andreoni, J. & Sprenger C. (2012). "Estimating Time Preferences from Convex Budgets." American Economic Review, 102(7), 3333-56Google Scholar
  4. Blavatskyy, P. (2017). Probabilistic Intertemporal Choice. Journal of Mathematical Economics 73, 142–148Google Scholar
  5. Blavatskyy, P. (2018). Temporal dominance and relative patience in intertemporal choice Economic Theory 65(2), 361–384Google Scholar
  6. Blavatskyy, P. R. (2016). A monotone model of intertemporal choice. Economic Theory, 62(4), 785–812.CrossRefGoogle Scholar
  7. Bøhren, Ø., & Hansen, T. (1980). Capital budgeting with unspecified discount rates. Scandinavian Journal of Economics, 82(1), 45–58.CrossRefGoogle Scholar
  8. Cavagnaro, D. R., Aranovich, G. J., McClure, S. M., Pitt, M. A., & Myung, J. (2016). On the functional form of temporal discounting: An optimized adaptive test. Journal of Risk and Uncertainty, 52(3), 233–254.CrossRefGoogle Scholar
  9. Chabris, C., Laibson, D., Morris, C., Schuldt, J., & Taubinsky, D. (2008). Individual laboratory-measured discount rates predict field behavior. Journal of Risk and Uncertainty, 37(2–3), 237–269.CrossRefGoogle Scholar
  10. Fechner, G. (1860). Elements of psychophysics. New York: Holt, Rinehart and Winston.Google Scholar
  11. Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25–42.CrossRefGoogle Scholar
  12. Hey, J., & Orme, C. (1994). Investigating generalisations of expected utility theory using experimental data. Econometrica, 62(6), 1291–1326.CrossRefGoogle Scholar
  13. Ida, T., & Goto, R. (2009). Simultaneous measurement of time and risk preferences: Stated preference discrete choice modeling analysis depending on smoking behavior. International Economic Review, 50(4), 1169–1182.CrossRefGoogle Scholar
  14. Koopmans, T. C. (1960). Stationary ordinal utility and impatience. Econometrica, 28(2), 287–309.CrossRefGoogle Scholar
  15. Laury, S. K., McInnes, M. M., & Swarthout, J. T. (2012). Avoiding the curves: Direct elicitation of time preferences. Journal of Risk and Uncertainty, 44(3), 181–217.CrossRefGoogle Scholar
  16. Loewenstein, G., & Prelec, D. (1992). Anomalies in intertemporal choice: Evidence and an interpretation. Quarterly Journal of Economics, 107(2), 573–597.CrossRefGoogle Scholar
  17. Loomes, G., Moffatt, P. G., & Sugden, R. (2002). A microeconomic test of alternative stochastic theories of risky choice. Journal of Risk and Uncertainty, 24(2), 103–130.CrossRefGoogle Scholar
  18. Luce, R. D. (1959). Individual choice behavior. New York: Wiley.Google Scholar
  19. Meier, S., & Sprenger, C. D. (2015). Temporal stability of time preferences. Review of Economics and Statistics, 97(2), 273–286.CrossRefGoogle Scholar
  20. Pan, J., Webb, C. S., & Zank, H. (2015) An extension of quasihyperbolic discounting to continuous time Games and Economic Behavior, 89, 43–55. 14, 31, 69Google Scholar
  21. Phelps, E., & Pollak, R. (1968). On second-best national saving and game-equilibrium growth. Review of Economic Studies, 35(2), 185–199.Google Scholar
  22. Samuelson, P. (1937). A note on measurement of utility. Review of Economic Studies, 4(2), 155–161.CrossRefGoogle Scholar
  23. Tanaka, T., Camerer, C. F., & Nguyen, Q. (2010). Risk and time preferences: Linking experimental and household survey data from Vietnam. American Economic Review, 100(1), 557–571.CrossRefGoogle Scholar
  24. Thaler, R. H. (1981). Some empirical evidence on dynamic inconsistency. Economics Letters, 8(3), 201–207.CrossRefGoogle Scholar
  25. Toubia, O., Johnson, E., Evgeniou, T., & Delquié, P. (2013). Dynamic experiments for estimating preferences: An adaptive method of eliciting time and risk parameters. Management Science, 59(3), 613–640.CrossRefGoogle Scholar
  26. Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57(2), 307–333.CrossRefGoogle Scholar
  27. Wilcox, N. T. (2008). Stochastic models for binary discrete choice under risk: A critical primer and econometric comparison. In J. C. Cox & G. W. Harrison (Eds.), Research in Experimental Economics Vol. 12: Risk Aversion in Experiments (pp. 197–292). Bingley: Emerald.Google Scholar
  28. Wilcox, N. T. (2011). “Stochastically more risk averse:” A contextual theory of stochastic discrete choice under risk. Journal of Econometrics, 162(1), 89–104.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Montpellier Business School, Montpellier Research in ManagementMontpellier Cedex 4France
  2. 2.Université Paris 8Saint-DenisFrance

Personalised recommendations