Advertisement

Journal of Risk and Uncertainty

, Volume 55, Issue 2–3, pp 119–145 | Cite as

Time preferences and consumer behavior

  • David Bradford
  • Charles Courtemanche
  • Garth HeutelEmail author
  • Patrick McAlvanah
  • Christopher Ruhm
Article

Abstract

We investigate the predictive power of survey-elicited time preferences. The discount factor elicited from choice experiments using real payments predicts various health, energy, and financial outcomes, including overall self-reported health, smoking, installing energy-efficient lighting, and credit card balance. Allowing for time-inconsistent preferences, both the long-run and present-bias discount factors (δ and β) are also significantly associated in the expected direction with several outcomes. We consider several hypotheses regarding the strength of the association between discount factors and outcomes, such as salience of the outcome or liquidity constraints.

Keywords

Time preferences Time-inconsistency Health Energy Risk and time Discounting Present bias 

JEL Classifications

D91 D03 I12 Q40 D14 

Notes

Acknowledgements

We thank Will Mautz and Camden Sweed for valuable research assistance, Georgia State University, the University of North Carolina at Greensboro, and the Harvard Center for Risk Analysis for funding, Darren Lubotsky for providing his code to implement the multiple proxies procedure, and Allen Bellas and conference and seminar participants at UNCG, GSU, Georgia Tech, the Federal Trade Commission, the Midwest Economics Association meetings, and the Harvard Center For Risk Analysis’s March 2014 “Risk, Perception, and Response” conference for helpful comments. Ruhm thanks the University of Virginia Bankard Fund for partial financial support. The views expressed in this article are those of the authors and do not necessarily reflect those of the Federal Trade Commission.

Supplementary material

11166_2018_9272_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1248 kb)

References

  1. Ainslie, G. (1991). Derivation of “rational” economic behavior from hyperbolic discount curves. The American Economic Review, 81(2), 334–340.Google Scholar
  2. Allcott, H., & Taubinsky, D. (2015). Evaluating behaviorally motivated policy: Experimental evidence from the lightbulb market. American Economic Review, 105(8), 2501–2538.CrossRefGoogle Scholar
  3. Allcott, H., & Wozny, N. (2014). Gasoline prices, fuel economy, and the energy paradox. Review of Economics and Statistics, 96(10), 779–795.CrossRefGoogle Scholar
  4. Andersen, S., Harrison, G., Lau, M., & Rutstrom, E. E. (2008). Eliciting risk and time preferences. Econometrica, 76(3), 583–618.CrossRefGoogle Scholar
  5. Andreoni, J., & Sprenger, C. (2012a). Estimating time preferences from convex budgets. American Economic Review, 102(7), 3333–3356.CrossRefGoogle Scholar
  6. Andreoni, J., & Sprenger, C. (2012b). Risk preferences are not time preferences. American Economic Review, 102(7), 3357–3376.CrossRefGoogle Scholar
  7. Ariely, D., & Wertenbroch, K. (2002). Procrastination, deadlines, and performance: Self-control by precommitment. Psychological Science, 13(3), 219–224.CrossRefGoogle Scholar
  8. Arya, S., Eckel, C., & Wichman, C. (2013). Anatomy of the credit score. Journal of Economic Behavior & Organization, 95, 175–185.CrossRefGoogle Scholar
  9. Attari, S., DeKay, M., Davidson, C., & Bruine de Bruin, W. (2010). Public perceptions of energy consumption and savings. Proceedings of the National Academy of Sciences, 107(7), 16054–16059.CrossRefGoogle Scholar
  10. Augenblick, N., Niederle, M., & Sprenger, C. (2015). Working over time: Dynamic inconsistency in real effort tasks. The Quarterly Journal of Economics, 130(3), 1067–1115.CrossRefGoogle Scholar
  11. Axon, R. N., Bradford, W. D., & Egan, B. M. (2009). The role of individual time preferences in health behaviors among hypertensive adults. Journal of the American Society of Hypertension, 3(1), 35–41.CrossRefGoogle Scholar
  12. Bénabou, R., & Tirole, J. (2004). Willpower and personal rules. Journal of Political Economy, 112(4), 848–886.CrossRefGoogle Scholar
  13. Bradford, W. D. (2010). The association between individual time preferences and health maintenance habits. Medical Decision Making, 30, 99–112.CrossRefGoogle Scholar
  14. Bradford, W. D., Zoller, J., & Silvestri, G. (2010). Estimating the effect of individual time preferences on the use of disease screening. Southern Economic Journal, 76, 1005–1031.CrossRefGoogle Scholar
  15. Burks, S., Carpenter, J., Gotte, L., & Rustichini, A. (2012). Which measures of time preference best predict outcomes? Evidence from a large-scale field experiment. Journal of Economic Behavior and Organization, 84(1), 308–320.CrossRefGoogle Scholar
  16. Carroll, G. D., Choi, J. J., Laibson, D., Madrian, B. C., & Metrick, A. (2009). Optimal defaults and active decisions. Quarterly Journal of Economics, 124, 1639–1674.CrossRefGoogle Scholar
  17. Chabris, C., Laibson, D., Morris, C., Schuldt, J., & Taubinsky, D. (2008). Individual laboratory-measured discount rates predict field behavior. Journal of Risk and Uncertainty, 37(2/3), 237–269.CrossRefGoogle Scholar
  18. Chapman, G. B., & Elstein, A. S. (1995). Valuing the future: Temporal discounting of health and money. Medical Decision Making, 15, 373–386.CrossRefGoogle Scholar
  19. Courtemanche, C., Heutel, G., & McAlvanah, P. (2015). Impatience, incentives and obesity. Economic Journal, 125, 1–31.CrossRefGoogle Scholar
  20. DellaVigna, S., & Malmendier, U. (2006). Paying not to go to the gym. American Economic Review, 96(3), 694–719.CrossRefGoogle Scholar
  21. Fang, H., & Silverman, D. (2009). Time-inconsistency and welfare program participation: Evidence from the NLSY. International Economic Review, 50(4), 1043–1077.CrossRefGoogle Scholar
  22. Ferecatu, A., & Önçüler, A. (2016). Heterogeneous risk and time preferences. Journal of Risk and Uncertainty, 53(1), 1–28.CrossRefGoogle Scholar
  23. Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25–42.CrossRefGoogle Scholar
  24. Frederick, S., Loewenstein, G., & O’Donoghue, T. (2002). Time discounting and time preference: A critical review. Journal of Economic Literature, 40(2), 351–401.CrossRefGoogle Scholar
  25. Ganiats, T. G., Carson, R. T., Hamm, R. M., Cantor, S. B., Sumner, W., Spann, S. J., Hagen, M. D., & Miller, C. (2000). Population-based time preferences for future health outcomes. Medical Decision Making, 20(3), 263–270.CrossRefGoogle Scholar
  26. Gillingham, K., & Palmer, K. (2014). Bridging the energy efficiency gap: Policy insights from economic theory and empirical evidence. Review of Environmental Economics and Policy, 8(1), 18–38.CrossRefGoogle Scholar
  27. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6(2), 65–70.Google Scholar
  28. Ioannou, C. A., & Sadeh, J. (2016). Time preferences and risk aversion: Tests on domain differences. Journal of Risk and Uncertainty, 53(1), 29–54.CrossRefGoogle Scholar
  29. Kahneman, D. (2011). Thinking, fast and slow. New York: MacMillan.Google Scholar
  30. Laibson, D. (1997). Golden eggs and hyperbolic discounting. The Quarterly Journal of Economics, 112(2), 443–477.CrossRefGoogle Scholar
  31. Lubotsky, D., & Wittenberg, M. (2006). Interpretation of regressions with multiple proxies. Review of Economics and Statistics, 88(3), 549–562.CrossRefGoogle Scholar
  32. Meier, S., & Sprenger, C. (2010). Present-biased preferences and credit card borrowing. American Economic Journal: Applied Economics, 2(1), 193–210.Google Scholar
  33. Newell, R. G., & Siikamäki, J. (2015). Individual time preferences and energy efficiency. American Economic Review, 105(5), 196–200.CrossRefGoogle Scholar
  34. Ruhm, C. J. (2012). Understanding overeating and obesity. Journal of Health Economics, 31(6), 781–796.CrossRefGoogle Scholar
  35. Samuelson, P. A. (1937). A note on measurement of utility. Journal of Economic Studies, 4(2), 155–161.Google Scholar
  36. Strotz, R. H. (1955). Myopia and inconsistency in dynamic utility maximization. The Review of Economic Studies, 23(3), 165–180.Google Scholar
  37. Scharff, R. L., & Viscusi, W. K. (2011). Heterogeneous rates of time preference and the decision to smoke. Economic Inquiry, 49(4), 959–972.CrossRefGoogle Scholar
  38. Stanovich, K., & Wests, R. (2000). Individual differences in reasoning: Implications for the rationality debate? Behavioral and Brain Sciences, 22(5), 645–726.CrossRefGoogle Scholar
  39. Sutter, M., Kocher, M., Rutzler, D., & Trautmann, S. (2013). Impatience and uncertainty: Experimental decisions predict adolescents’ field behavior. American Economic Review, 103(1), 510–531.CrossRefGoogle Scholar
  40. Tanaka, T., Camerer, C. F., & Nguyen, Q. (2010). Risk and time preferences: Linking experimental and household survey data from Vietnam. American Economic Review, 100(1), 557–571.CrossRefGoogle Scholar
  41. Thaler, R. (1981). Some empirical evidence on dynamic inconsistency. Economics Letters, 8(3), 201–207.CrossRefGoogle Scholar
  42. Toubia, O., Johnson, E., Evgeniou, T., & Delquié, P. (2013). Dynamic experiments for estimating preferences: An adaptive method of eliciting time and risk parameters. Management Science, 59(3), 613–640.CrossRefGoogle Scholar
  43. Van Der Pol, M. (2011). Health, education, and time preference. Health Economics, 20(8), 917–929.CrossRefGoogle Scholar
  44. Von Gaudecker, H.-M., Van Soest, A., & Wengström, E. (2011). Heterogeneity in risky choice behavior in a broad population. American Economic Review, 101(2), 664–694.CrossRefGoogle Scholar
  45. Weller, R., Cook, E., Avsar, K., & Cox, J. (2008). Obese women show greater delay discounting than healthy-weight women. Appetite, 51, 563–569.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • David Bradford
    • 1
  • Charles Courtemanche
    • 2
    • 3
  • Garth Heutel
    • 2
    • 3
    • 4
    Email author
  • Patrick McAlvanah
    • 5
  • Christopher Ruhm
    • 3
    • 6
  1. 1.University of GeorgiaAthensUSA
  2. 2.Georgia State UniversityAtlantaUSA
  3. 3.NBER (National Bureau of Economic Research)CambridgeUSA
  4. 4.Department of EconomicsGeorgia State UniversityAtlantaUSA
  5. 5.Federal Trade CommissionWashingtonUSA
  6. 6.University of VirginiaCharlottesvilleUSA

Personalised recommendations