Advertisement

Journal of Risk and Uncertainty

, Volume 51, Issue 1, pp 23–51 | Cite as

Saving lives with stem cell transplants

  • Damien Sheehan-Connor
  • Theodore C.  Bergstrom
  • Rodney J. Garratt
Article

Abstract

Blood stem cell transplants can be life-saving for some patients, but the chances of finding a matching donor are small unless a large number of potential donors are evaluated. Many nations maintain large registries of potential donors who have offered to donate stem cells if they are the best available match for a patient needing a transplant. An alternative source of stem cells, umbilical cord blood, is stored in banks. Everyone faces a small probability of needing a transplant which will increase their likelihood of survival. The registries and cord blood banks are thus an interesting example of a pure public good with widely dispersed benefits. This paper explores the gains in survival probability that arise from increased registry and bank sizes and uses value of statistical life methods to estimate benefits and compare them to costs. Our results suggest that for the United States and for the world as a whole, the sum of marginal benefits of an increase in either the adult registry or the cord blood bank exceeds marginal costs. However, marginal benefit-cost ratios for the adult registry are much greater than those for the cord blood banks, which suggests that to the extent that these two sources of life saving compete for public funds it may be preferable to prioritize expansion of the adult registry over cord blood banks.

Keywords

Benefit-cost analysis Transplantation Matching Donations Stem cells 

JEL Classifications

D61 H41 I11 

Supplementary material

11166_2015_9222_MOESM1_ESM.pdf (199 kb)
(PDF 198 KB)

References

  1. Alberini, A. (2005). What is a life worth? Robustness of vsl values from contingent valuation surveys. Risk Analysis, 25(4), 783–800.CrossRefGoogle Scholar
  2. Aldy, J. E., & Viscusi, W. K. (2008). Adjusting the value of a statistical life for age and cohort effects. The Review of Economics and Statistics, 90(3), 573–581.CrossRefGoogle Scholar
  3. Anasetti, C., Hillgruber, R., Nye, V., Ayala, E., et al. (2010). Patient ethnicity markedly affects the probability of finding an HLA-A, -B,-C amd DRB 1 allele matched unrelated donor for hemopoietic cell transplantation. Biology of Blood and Marrow Transplantation, 16(2, Supplement 1), S172.CrossRefGoogle Scholar
  4. Ballen, K. K., Koreth, J., Chen, Y.-B., Dey, B. R., & Spitzer, T. R. (2012). Selection of optimal alternative graft source: Mismatched unrelated donor, umbilical cord blood, or haploidentical transplant. Blood, 119(9), 1972–1980.CrossRefGoogle Scholar
  5. Barker, J. N., Scaradavou, A., & Stevens, C. E. (2010). Combined effect of total nucleated cell dose and hla match on transplantation outcome in 1061 cord blood recipients with hematologic malignancies. Blood, 115(9), 1843–1849.CrossRefGoogle Scholar
  6. Bergstrom, T. (1982). When is a man’s life worth more than his human capital? In Jones-Lee, M. W. (Ed.) , The Value of Life and Safety (pp. 3–26). North Holland.Google Scholar
  7. Bergstrom, T. C., Garratt, R., & Sheehan-Connor, D. (2009). One chance in a million: Altruism and the bone marrow registry. American Economic Review, 99 (4), 1309–1334.CrossRefGoogle Scholar
  8. Bergstrom, T. C., Garratt, R., & Sheehan-Connor, D. (2012). Stem cell donor matching for patients of mixed race. The B.E. Journal of Economic Analysis and Policy, 12(1).Google Scholar
  9. Blomquist, G. C. (1979). Value of life saving: Implications of consumption activity. Journal of Political Economy, 87(3), 540–558.CrossRefGoogle Scholar
  10. Bone Marrow Donors Worldwide. (2014). Total number of stem cell donors. Available at, https://www.bmdw.org/index.php?id=statistics_stemcell. Accessed June 20, 2014.
  11. Central Intelligence Agency. (2013). The World Factbook 2013-2014. Washington, DC.Google Scholar
  12. de Blaeij, A., Florax, R. J., Rietveld, P., & Verhoef, E. (2003). The value of statistical life in road safety: A meta-analysis. Accident Analysis and Prevention, 35, 973–986.CrossRefGoogle Scholar
  13. Dehn, J., Buck, K., Yang, S., Schmidt, S., et al. (2010). 8/8 high-resolution match rate: Caucasian and African American patients. Biology of Blood and Marrow Transplantation, 17(2, Supplement 1), S170–171.CrossRefGoogle Scholar
  14. Drèze, J. H., & Dehez, P. (1982). State-dependent utility, the demand for insurance and the value of safety In Jones-Lee, M. W. (Ed.), , The Value of Life and Safety (pp. 41–65). North Holland.Google Scholar
  15. Eapen, M., Rocha, V., Sanz, G., Scaradavou, A., Zhang, M.-J., Arcese, W., Sirvent, A., Champlin, R. E., Chao, N., Gee, A. P., et al. (2010). Effect of graft source on unrelated donor haemopoietic stem-cell transplantation in adults with acute leukaemia: A retrospective analysis. The Lancet Oncology, 11(7), 653–660.CrossRefGoogle Scholar
  16. Flomenberg, N., Baxter-Lowe, L. A., Confer, D., Fernandez-Vina, M., Filipovich, A., Horowitz, M., Hurley, C., Kollman, C., Anasetti, C., Noreen, H., et al. (2004). Impact of hla class i and class ii high-resolution matching on outcomes of unrelated donor bone marrow transplantation: Hla-c mismatching is associated with a strong adverse effect on transplantation outcome. Blood, 104(7), 1923–1930.CrossRefGoogle Scholar
  17. Gragert, L., Eapen, M., Williams, E., Freeman, J., Spellman, S., Baitty, R., Hartzman, R., Rizzo, J. D., Horowitz, M., Confer, D., & Maiers, M. (2014). Hla match likelihoods for hematopoietic stem-cell grafts in the U.S. registry. New England Journal of Medicine, 371(4), 339–348.CrossRefGoogle Scholar
  18. Gragert, L., Madbouly, A., Freeman, J., & Maiers, M. (2013). Six-locus high resolution hla haplotype frequencies derived from mixed-resolution dna typing for the entire us donor registry. Human Immunology, 74(10), 1313–1320.CrossRefGoogle Scholar
  19. Hammitt, J. K. (2007). Valuing changes in mortality risk: Lives saved versus life years saved. Review of Environmental Economics and Policy, 1(2), 228–240.CrossRefGoogle Scholar
  20. Health Resources and Services Administration. (2012). Detailed description of donor registry data. http://bloodcell.transplant.hrsa.gov/research/transplant_data/registry_tx_data/longdesc/index.html. (Accessed March 12, 2013).
  21. Health Resources and Services Administration. (2014a). Detailed description of donor registry data, Figure 3. http://bloodcell.transplant.hrsa.gov/research/transplant_data/registry_tx_data/longdesc/index.html. (Accessed January 12, 2015).
  22. Health Resources and Services Administration. (2014b). Donor registry data. http://bloodcell.transplant.hrsa.gov/RESEARCH/Registry_Data/index.html. (Accessed June 10, 2014).
  23. Howard, D. H., Meltzer, D., Kollman, C., Maiers, M., Logan, B., Gragert, L., Setterholm, M., & Horowitz, M. M. (2008). Use of cost-effectiveness analysis to determine inventory size for a national cord blood bank. Medical Decision Making, 28(2), 243–253.Google Scholar
  24. Jones-Lee, M. (1976). The value of life: An economic analysis. Chicago, IL: University of Chicago Press.Google Scholar
  25. Jones-Lee, M., Hammerton, M., & Philips, P. (1985). The value of safety: Results of a national sample survey. Economic Journal, 95, 49–72.CrossRefGoogle Scholar
  26. Knieser, T. J., Viscusi, W. K., Woock, C., & Ziliak, J. P. (2012). The value of a statistical life: Evidence from panel data. Review of Economics and Statistics, 94 (1), 74–87.CrossRefGoogle Scholar
  27. Kollman, C., Abella, E., Baitty, R., Beatty, P., Chakraborty, R., Christiansen, C., Hartzman, R., Hurly, C., Milford, E., Nyman, J., Smith, T., Switzer, G., Wada, R., & Setterholm, M. (2004). Assessment of optimal size and composition of the U.S. national registry of hematopoietic stem cell donors. Transplantation, 78(1), 89–95.CrossRefGoogle Scholar
  28. Kollman, C., Maiers, M., Gragert, L., Müller, C., et al. (2007). Estimation of HLA-A -B -DRB1 haplotype frequencies using mixed resolution data from a national registry with selective retyping of volunteers. Human Immunology, 68(12), 950–958.CrossRefGoogle Scholar
  29. Krupnick, A. (2007). Mortality-risk valuation and age: Stated preference evidence. Review of Environmental Economics and Policy, 1(2), 261–282.CrossRefGoogle Scholar
  30. Kurtzberg, J., Cairo, M. S., Fraser, J. K., Baxter-Lowe, L., Cohen, G., Carter, S. L., & Kernan, N. A. (2005). Results of the cord blood transplantation (coblt) study unrelated donor banking program. Transfusion, 45(6), 842–855.CrossRefGoogle Scholar
  31. Majhail, N., & Rizzo, J. D. (2013). Surviving the cure: Long term followup of hematopoietic cell transplant recipients. Bone Marrow Transplantation, 48(9), 1145–1151.CrossRefGoogle Scholar
  32. Miller, T. R. (2000). Variations between countries in values of statistical life. Journal of Transport Economics and Policy, 34(2), 169–188.Google Scholar
  33. Mishan, E. (1971). Evaluation of life and limb: A theoretical approach. Journal of Political Economy, 79, 687–705.CrossRefGoogle Scholar
  34. Mori, M., Beatty, P., Graves, M., Boucher, K., & Milford, F. (1997). HLA gene and haplotype frequencies in the North American population: The National Marrow Donor Program Donor Registry. Transplantation, 64, 1017–1027.CrossRefGoogle Scholar
  35. Schmidt, A. H., Sauter, J., Pingel, J., & Ehninger, G. (2014). Toward an optimal global stem cell donor recruitment strategy. PloS One, 9(1), e86605.CrossRefGoogle Scholar
  36. Seitz, R., Hilger, A., & Heiden, M. (2012). Bone marrow, peripheral blood, or umbilical cord blood: Does the source of allogeneic hematopoietic progenitor cells matter? Journal of Blood Disorders & Transfusion, S1(007).Google Scholar
  37. Thaler, R., & Rosen, S. (1975). The value of saving a life: Evidence from the labor market. In Terleckyj, N. (Ed.) , Household Production and Consumption (pp. 265–300). New York: Columbia University Press.Google Scholar
  38. UK Department for Transport. (2011). Updating the vpf and vpis: Phase 1: Final report. http://assets.dft.gov.uk/publications/pgr-economics-rdg-updatingvpfvpi-pdf/vpivpfreport.pdf. (Accessed July 16, 2014).
  39. United States Census Bureau. (2014). Age and sec composition in the United States: 2012, table 1. http://www.census.gov/population/age/data/2012comp.html. (Accessed January 12, 2015).
  40. U.S. Department of Transportation. (2013). Guidance on treatment of the economic value of a statistical life in U.S. Department of Transportation analyses. http://www.dot.gov/regulations/economic-values-used-in-analysis. (Accessed July 4, 2014).
  41. U.S. Environmental Protection Agency. (2014). Frequently asked questions on mortality risk valuation. http://yosemite.epa.gov/EE%5Cepa%5Ceed.nsf/webpagesMortalityRiskValuation.html#whatvalue. (Accessed July 4, 2014).
  42. Viscusi, W. K. (1978). Labor market valuations of life and limb: Empirical evidence and policy implications. Public Policy, 26(3), 359–386.Google Scholar
  43. Viscusi, W. K. (2013). Using data from the census of fatal occupational injuries to estimate the “value of a statistical life.” Monthly Labor Review, pp. 1–17.Google Scholar
  44. Viscusi, W. K., & Aldy, J. (2003). The value of a statistical life: A critical review of market estimates throughout the world. Journal of Risk and Uncertainty, 27(1), 5–76.CrossRefGoogle Scholar
  45. World Marrow Donor Association. (2009). Stem cell donor registries annual report 2009. WMDA Publications.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Damien Sheehan-Connor
    • 1
  • Theodore C.  Bergstrom
    • 2
  • Rodney J. Garratt
    • 3
  1. 1.Economics DepartmentWesleyan UniversityMiddletownUSA
  2. 2.Economics DepartmentUniversity of California Santa BarbaraSanta BarbaraUSA
  3. 3.Economics DepartmentUniversity of California Santa Barbara and Federal Reserve Bank of New YorkSanta BarbaraUSA

Personalised recommendations