Journal of Risk and Uncertainty

, Volume 46, Issue 3, pp 247–264 | Cite as

The St. Petersburg Paradox at 300



Nicolas Bernoulli’s discovery in 1713 that games of hazard may have infinite expected value, later called the St. Petersburg Paradox, initiated the development of expected utility in the following three centuries. An account of the origin and the solution concepts proposed for the St. Petersburg Paradox is provided. D’Alembert’s ratio test is used for a uniform treatment of the manifestations of the St. Petersburg Paradox and its solution proposals. It is also shown that a St. Petersburg Paradox can be solved or regained by appropriate transformations of the winnings or their utilities on the one hand or the probabilities on the other. This last feature is novel for the analysis of the St. Petersburg Paradox.


St. Petersburg Paradox Expected utility Games of hazard Risk attitude 

JEL Classifications

D81 B16 


  1. Arrow, K.J. (1970). Essays in the theory of risk-bearing. Amsterdam and London: North-Holland Publishing Company.Google Scholar
  2. Arrow, K.J. (1974). The use of unbounded utility functions in expected-utility maximization: response. The Quarterly Journal of Economics, 88, 136–138.CrossRefGoogle Scholar
  3. Aumann, R.J. (1977). The St. Petersburg Paradox: a discussion of some recent comments. Journal of Economic Theory, 14, 443–445.CrossRefGoogle Scholar
  4. Bentham, J. (1781/2000). An introduction to the principles of morals and legislation. Reprint. Kitchener: Batoche Books.Google Scholar
  5. Bernoulli, N. (1713–1732). Correspondence of Nicolas Bernoulli concerning the St. Petersburg Game, translated by Richard J. Pulskamp. Downloadable from
  6. Bernoulli D. (1738). Specimen theoriae novae de mensura sortis. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 5, 175–192.Google Scholar
  7. Bernoulli, D. (1896). Die Grundlage der modernen Wertlehre: Versuch einer neuen Theorie der Wertbestimmung von Glücksfällen. Aus dem Lateinischen übersetzt und mit Erläuterungen versehen von Professor Dr. Alfred Pringsheim. Mit einer Einleitung von Dr. Ludwig Fick. Leipzig: Verlag von Duncker & Humblot.Google Scholar
  8. Bernoulli, D. (1954). Exposition of a new theory on the measurement of risk. English translation by Louise Sommer. Econometrica, 22, 23–36.CrossRefGoogle Scholar
  9. Blavatskyy, P.R. (2005). Back to the St. Petersburg Paradox? Management Science, 51, 677–678.CrossRefGoogle Scholar
  10. Brito, D.L. (1975). Becker’s theory of the allocation of time and the St. Petersburg Paradox. Journal of Economic Theory, 10, 123–126.CrossRefGoogle Scholar
  11. Buffon, G.L.M.L., Comte de (1777/2010). Histoire naturelle, vol. 4, supplement. English translation. In J.D. Hey, T.M. Neugebauer & C.M. Pasca (Eds.) Université de Luxembourg Research Paper Series No. 10-06. Downloadable from
  12. Chipman, J.S. (1976). The Paretian heritage. Revue Européenne des sciences sociales et cahiers Vilfredo Pareto, 14(37), 65–171.Google Scholar
  13. Cowen, T., & High J. (1988). Time, bounded utility, and the St. Petersburg Paradox. Theory and Decision, 25, 219–233.CrossRefGoogle Scholar
  14. DeGroot, M.H. (1970). Optimal statistical decisions. New York: McGraw-Hill Book Company.Google Scholar
  15. de Montmort, P.R. (1713). Essay d’analyse sur les jeux de hazard. Revue & augmentée de plusieurs lettres, 2nd edn. Paris: Jacque Quillau.Google Scholar
  16. Fechner, G.T. (1860). Elemente der Psychophysik. Breitkopf und Härtel: Leipzig.Google Scholar
  17. Fishburn, P.C. (1970). Utility theory for decision making. New York: Wiley.Google Scholar
  18. Fry, T.C. (1928). Probability and its engineering uses. New York: Van Nostrand.Google Scholar
  19. Hicks, J.R., & Allen, R.G.D. (1934). A reconsideration of the theory of value. Economica (N. S.), 1, 52–76.CrossRefGoogle Scholar
  20. Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291.CrossRefGoogle Scholar
  21. Kuhn, H.W., & Tucker A.W. (1958). John von Neumann’s work in the theory of games and mathematical economics. Bulletin of the American Mathematical Society, 64/3(Part II), 100–122.CrossRefGoogle Scholar
  22. Lopes, L.L. (1981). Decision making in the short run. Journal of Human Experimental Psychology: Human Learning and Memory, 7, 377–385.CrossRefGoogle Scholar
  23. Luce, R.D., & Raiffa, H. (1957). Games and decisions: Introduction and critical survey. New York: Wiley.Google Scholar
  24. Menger, K. (1934). Das Unsicherheitsmoment in der Wertlehre: Betrachtungen im Anschluß an das sogenannte Petersburger Spiel. Zeitschrift für Nationalökonomie, 5, 459–485.CrossRefGoogle Scholar
  25. Menger, K. (1967). The role of uncertainty in economics. In M. Shubik (Ed.), Essays in mathematical economics in honor of Oskar Morgenstern. Princeton: Princeton University Press.Google Scholar
  26. Morgenstern, O. (1976). The collaboration between Oskar Morgenstern and John von Neumann on the theory of games. Journal of Economic Literature, 14, 805–816.Google Scholar
  27. Neugebauer, T. (2010). Moral impossibility in the Petersburg Paradox: A literature survey and experimental evidence. LSF Research Working Paper Series No. 10-174. Université de Luxembourg.Google Scholar
  28. Pareto, V. (1971). Manual of political economy. English translation by Ann S. Schwier. New York: Augustus M. Kelley Publishers.Google Scholar
  29. Samuelson, P.A. (1977). St. Petersburg Paradoxes: defanged, dissected, and historically described. Journal of Economic Literature, 15, 24–55.Google Scholar
  30. Samuelson, P.A. (1983). Foundations of economic analysis. Enlarged edition. Cambridge, MA and London: Harvard University Press.Google Scholar
  31. Savage, L.J. (1972). The foundations of statistics, 2nd edn. New York: Dover Publications.Google Scholar
  32. Shapley, L.S. (1977a). The St. Petersburg Paradox: a con game? Journal of Economic Theory, 14, 439–442.CrossRefGoogle Scholar
  33. Shapley, L.S. (1977b). Lotteries and menus: a comment on unbounded utilities. Journal of Economic Theory, 14, 446–453.CrossRefGoogle Scholar
  34. Stephenson, G. (1973). Mathematical methods for science students, 2nd edn. Harlow (Essex): Longman.Google Scholar
  35. Stigler, G.J. (1950a). The development of utility theory. I. Journal of Political Economy, 58, 307–327.CrossRefGoogle Scholar
  36. Stigler, G.J. (1950b). The development of utility theory. II. Journal of Political Economy, 58, 373–396.CrossRefGoogle Scholar
  37. Toulet, C. (1986). An axiomatic model of unbounded utility functions. Mathematics of Operations Research, 11, 81–94.CrossRefGoogle Scholar
  38. Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5, 297–323.CrossRefGoogle Scholar
  39. Viner, J. (1925a). The utility concept in value theory and its critics. Journal of Political Economy, 33, 369–387.CrossRefGoogle Scholar
  40. Viner, J. (1925b). The utility concept in value theory and its critics. Journal of Political Economy, 33, 638–659.CrossRefGoogle Scholar
  41. Vlek, C.A.J., & Wagenaar, W.A. (1979). Judgement and decision under uncertainty. In J.A. Michon, E.G.J. Eijkman, L.F.W. de Klerk (Eds.), Handbook of psychonomics. vol. 2. Amsterdam: North-Holland.Google Scholar
  42. von Neumann, J., & Morgenstern, O. (1947). The theory of games and economic behavior, 2nd edn. Princeton: Princeton University Press.Google Scholar
  43. Wakker, P.P. (1993). Unbounded utility for Savage’s ‘foundations of statistics’, and other models. Mathematics of Operations Research, 18, 446–485.CrossRefGoogle Scholar
  44. Weber, E.H. (1834). De pulsu, resorptione, auditu et tactu. Annotationes anatomicae et physiologicae. Koehler: Leipzig.Google Scholar
  45. Yaari, M.E. (1987). The dual theory of choice under risk. Econometrica, 55, 95–115.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of EconomicsChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations