Skip to main content
Log in

The Effect of Modeling Activities on Grade 5 Students’ Informal Reasoning About a Real-Life Issue

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

This research investigated the effect of modeling activities on grade 5 students’ informal reasoning about a real-life issue. An instrumental case study was conducted with 17 students (7 female and 10 male) at a public middle school in Turkey. Data were collected through semistructured interviews and student worksheets. The students’ informal reasoning patterns were analyzed using the informal reasoning pattern rubric; informal reasoning qualities were analyzed using the argumentation quality rubric. Furthermore, a content analysis was conducted to distill the relationship between informal reasoning and the students’ models. Findings indicated that the students did not use emotive reasoning patterns in the post-interview, failed to create high-quality informal reasoning, and referred to the modeling activities in different components of their reasoning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alım, M., Özdemir, Ü., & Yılar, B. (2008). 5.sınıf öğrencilerinin bazı coğrafya kavramlarını anlama düzeyleri ve kavram yanılgıları [5th grade students’ understanding levels of and misconceptions about some geography concepts]. Ataturk Universitesi Sosyal Bilimler Enstitusu Dergisi, 11(1), 151–162.

  • Angell, R. B. (1964). Reasoning and logic. New York: Appleton-Century-Crofts.

    Google Scholar 

  • Bağ, H., & Çalık, M. (2017). A thematic review of argumentation studies at the K-8 level. Educ Sci, 42(190), 281–303. https://doi.org/10.15390/EB.2017.6845.

    Article  Google Scholar 

  • Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. Int J Sci Educ, 22(8), 797–817. https://doi.org/10.1080/095006900412284.

    Article  Google Scholar 

  • Cassidy, E. W., & Kurfman, D. G. (1977). Decision making as purpose and process. In D. G. Kurfman (Ed.), Developing decision making skills (pp. 1–26). Arlington: National Council for the Social Studies.

    Google Scholar 

  • Chin, C., & Osborne, J. (2010). Supporting argumentation through students’ questions: case studies in science classrooms. J Learn Sci, 19(2), 230–284.

    Article  Google Scholar 

  • Cho, K.-L., & Jonassen, D. H. (2002). The effects of argumentation scaffolds on argumentation and problem solving. Educ Technol Res Dev, 50(3), 5–22. https://doi.org/10.1007/BF02505022.

    Article  Google Scholar 

  • Erduran, S. (2008). Methodological foundations in the study of argumentation in science classrooms. In S. Erduran & M.-P. Jiménez-Aleixandre (Eds.), Argumentation in science education: perspectives from classroom-based research (pp. 47–70). New York: Springer.

    Google Scholar 

  • Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: developments in the application of Toulmin’s argument pattern for studying science discourse. Sci Educ, 88(6), 915–933. https://doi.org/10.1002/sce.20012.

    Article  Google Scholar 

  • Evagorou, M., & Osborne, J. (2013). Exploring young students’ collaborative argumentation within a socioscientific issue. J Res Sci Teach, 50(2), 209–237. https://doi.org/10.1002/tea.21076.

    Article  Google Scholar 

  • Evans, J. S. B. T., & Thompson, V. A. (2004). Informal reasoning: theory and method. Can J Exp Psychol, 58(2), 69–74. https://doi.org/10.1037/h0085797.

    Article  Google Scholar 

  • Fang, S.-C., Hsu, Y.-S., & Lin, S.-S. (2019). Conceptualizing socioscientific decision making from a review of research in science education. Int J Sci Math Educ, 17, 427–448.

    Article  Google Scholar 

  • Giere, R. (1988). Explaining science: a cognitive approach. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Giere, R. N. (1999). Using models to represent reality. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 41–57). New York: Kluwer Academic/Plenum.

    Chapter  Google Scholar 

  • Gilbert, J. K. (2004). Models and modelling: routes to more authentic science education. Int J Sci Math Educ, 2(2), 115–130. https://doi.org/10.1007/s10763-004-3186-4.

    Article  Google Scholar 

  • Gilbert, J., & Justi, R. (2016). Modeling-based teaching in science education. Cham: Springer.

    Google Scholar 

  • Günel, M., Memiş, E. K., & Büyükkasap, E. (2010). Effects of the science writing heuristic approach on primary school students’ science achievement and attitude toward science course. Educ Sci, 35(155), 49–62.

    Google Scholar 

  • Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer Academic.

    Google Scholar 

  • Hestenes, D. (1992). Modeling games in the Newtonian world. Am J Phys, 60(8), 732–748.

    Article  Google Scholar 

  • Hogan, K., & Thomas, D. (2001). Cognitive comparisons of students’ systems modeling in ecology. J Sci Educ Technol, 10(4), 319–345. https://doi.org/10.1023/A:1012243102249.

    Article  Google Scholar 

  • Karahan, E., & Roehrig, G. H. (2016). Use of socioscientific contexts for promoting student agency in environmental science classrooms. Bartin University Journal of Faculty of Education, 5(2), 425–442.

    Google Scholar 

  • Kim, M., Anthony, R., & Blades, D. (2014). Decision making through dialogue: a case study of analyzing preservice teachers’ argumentation on socioscientific issues. Res Sci Educ, 44(6), 903–926. https://doi.org/10.1007/s11165-014-9407-0.

    Article  Google Scholar 

  • Kultusministerkonferenz (KMK). (2005). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss [Standards for the secondary school level in biology]. Berlin: Luchterhand.

  • Kolstø, S. D. (2001). Scientific literacy for citizenship: tools for dealing with the science dimension of controversial socioscientific issue. Sci Educ, 85(3), 291–310.

    Article  Google Scholar 

  • Koponen, I. (2007). Models and modelling in physics education: a critical re-analysis of philosophical underpinnings and suggestions for revisions. Sci & Educ, 16(7–8), 751–773.

    Article  Google Scholar 

  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learn Instr, 13(2), 205–226. https://doi.org/10.1016/S0959-4752(02)00021-X.

    Article  Google Scholar 

  • Kuhn, D. (1991). The skills of argument. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mason, L., & Boscolo, P. (2004). Role of epistemological understanding and interest in interpreting a controversy and in topic-specific belief change. Contemp Educ Psychol, 29(2), 103–128. https://doi.org/10.1016/j.cedpsych.2004.01.001.

    Article  Google Scholar 

  • Mason, L., & Scirica, F. (2006). Prediction of students’ argumentation skills about controversial topics by epistemological understanding. Learn Instr, 16(5), 492–509. https://doi.org/10.1016/j.learninstruc.2006.09.007.

    Article  Google Scholar 

  • Matthews, M. R. (2007). Models in science and in science education: an introduction. Sci & Educ, 16(7–8), 647–652.

    Article  Google Scholar 

  • McCann, T. M. (1989). Student argumentative writing knowledge and ability at three grade levels. Res Teach Engl, 23(1), 62–76.

    Google Scholar 

  • Means, M. L., & Voss, J. F. (1996). Who reasons well? Two studies of informal reasoning among children of different grade, ability, and knowledge levels. Cogn Instr, 14(2), 139–178. https://doi.org/10.1207/s1532690xci1402_1.

    Article  Google Scholar 

  • Milli Eğitim Bakanlığı. (2013). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3,4,5,6,7 ve 8. sınıflar) [Science lesson instructional program (Elementary and middle schools 3,4,5,6,7, and 8 grades)]. Ankara: Talim Terbiye Kurulu Başkanlığı.

  • Milli Eğitim Bakanlığı. (2018). Fen bilimleri dersi öğretim programı (İlkokul ve Ortaokul 3,4,5,6,7 ve 8. sınıflar) [Science lesson instructional program (Elementary and middle schools 3,4,5,6,7, and 8 grades)]. Ankara, Turkey: Talim Terbiye Kurulu Başkanlığı.

  • Mulder, Y. G., Bollen, L., De Jong, T., & Lazonder, A. W. (2016). Scaffolding learning by modelling: the effects of partially worked-out models. J Res Sci Teach, 53(3), 502–523. https://doi.org/10.1002/tea.21260.

    Article  Google Scholar 

  • Namdar, B., & Shen, J. (2016). Intersection of argumentation and the use of multiple representations in the context of socioscientific issues. International Journal of Science Education, 38(7), 1100–1132. https://doi.org/10.1080/09500693.2016.1183265

  • National Research Council. (1996). National science education standards. Washington, DC: National Academies Press.

    Google Scholar 

  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge: MIT Press.

    Book  Google Scholar 

  • Nersessian, N. J. (2009). How do engineering scientists think? Model-based simulation in biomedical engineering research laboratories. Top Cogn Sci, 1, 730–757.

    Article  Google Scholar 

  • OECD. (2006). Assessing scientific, reading, and mathematical literacy: a framework for PISA 2006. Paris: OECD.

    Book  Google Scholar 

  • Öztürk, N., & Yılmaz-Tüzün, O. (2017). Preservice science teachers’ epistemological beliefs and informal reasoning regarding socioscientific issues. Research in Science Education, 47(6), 1275–1304. https://doi.org/10.1007/s11165-016-9548-4.

  • Pallant, A., & Lee, H.-S. (2015). Constructing scientific arguments using evidence from dynamic computational climate models. J Sci Educ Technol, 24(2), 378–395. https://doi.org/10.1007/s10956-014-9499-3.

    Article  Google Scholar 

  • Park, S. (2016). Exploring the argumentation pattern in modeling-based learning about apparent motion of mars. Eurasia Journal of Mathematics, Science & Technology Education, 12(1), 87–107. https://doi.org/10.12973/eurasia.2016.1423a.

    Article  Google Scholar 

  • Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students’ argumentation in decision-making on a socio-scientific issue: implications for teaching. Int J Sci Educ, 21, 745–754.

    Article  Google Scholar 

  • Penner, D. E., Lehrer, R., & Schauble, L. (1998). From physical models to biomechanics: a design-based modeling approach. J Learn Sci, 7(3&4), 429–449. https://doi.org/10.2307/1466793.

    Article  Google Scholar 

  • Perkins, D. N., Farady, M., & Bushey, B. (1991). Everyday reasoning and the roots of intelligence. In J. F. Voss, D. N. Perkins, & J. W. Segal (Eds.), Informal reasoning and education (pp. 83–105). Hillsdale: Erlbaum.

    Google Scholar 

  • Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: a critical review of research. J Res Sci Teach, 41(5), 513–536.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005a). Patterns of informal reasoning in the context of socioscientific decision making. J Res Sci Teach, 42(1), 112–138. https://doi.org/10.1002/tea.20042.

    Article  Google Scholar 

  • Sadler, T. D., & Zeidler, D. L. (2005b). The significance of content knowledge for informal reasoning regarding socioscientific issues: applying genetics knowledge to genetic engineering issues. Sci Educ, 89(1), 71–93. https://doi.org/10.1002/sce.20023.

    Article  Google Scholar 

  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D., et al. (2009). Developing a learning progression for scientific modeling: making scientific modeling accessible and meaningful for learners. J Res Sci Teach, 46(6), 632–654. https://doi.org/10.1002/tea.20311.

    Article  Google Scholar 

  • Shen, J. (2006). Teaching strategies and conceptual change in professional development program for science teachers of K-8. Unpublished doctoral dissertation. Washington University in St. Louis.

  • Simon, H. A. (1976). (1976). From substantial to procedural rationality. In S. K. Kuipers, W. A. Nijenhuis, & G. R. Wagenaar (Eds.), 25 years of economic theory (pp. 65–86). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Stake, R. (1995). The art of case study research. Thousand Oaks: Sage.

    Google Scholar 

  • Stegmann, K., Wecker, C., Weinberger, A., & Fischer, F. (2011). Collaborative argumentation and cognitive elaboration in a computer-supported collaborative learning environment. Instr Sci, 40(2), 297–323. https://doi.org/10.1007/s11251-011-9174-5.

    Article  Google Scholar 

  • Svihla, V., & Linn, M. C. (2012). A design-based approach to fostering understanding of global climate change. Int J Sci Educ, 34(5), 651–676. https://doi.org/10.1080/09500693.2011.597453.

    Article  Google Scholar 

  • Topçu, M. S., Sadler, T. D., & Yilmaz-Tuzun, O. (2010). Preservice science teachers’ informal reasoning about socioscientific issues: the influence of issue context. Int J Sci Educ, 32(18), 2475–2495. https://doi.org/10.1080/09500690903524779.

    Article  Google Scholar 

  • Topçu, M. S., Yılmaz-Tüzün, Ö., & Sadler, T. D. (2011). Turkish preservice science teachers’ informal reasoning regarding socioscientific issues and the factors influencing their informal reasoning. J Sci Teach Educ, 22(4), 313–332. https://doi.org/10.1007/s10972-010-9221-0.

    Article  Google Scholar 

  • Topçu, M. S., Muğaloğlu, E. Z., & Güven, D. (2014). Socioscientific issues in science education: the case of Turkey. Educational Sciences: Theory & Practice, 14(6), 1–22. https://doi.org/10.12738/estp.2014.6.2226.

    Article  Google Scholar 

  • Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Turan, I., & Kartal, A. (2012). İlköğretim 5.sınıf öğrencilerinin doğal afetler konusu ile ilgili kavram yanılgıları [The misconcepts of the fifth grade students on natural disasters]. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 13(3), 67–81.

    Google Scholar 

  • Ulu, C., & Bayram, H. (2015). Argümantasyon tabanlı bilim öğrenme yaklaşımına dayalı laboratuvar etkinliklerinin 7. sınıf öğrencilerinin kavram öğrenmelerine etkisi: yaşamımızdaki elektrik ünitesi. [Effects of laboratory activities through the argumentation based inquiry approach on 7th grade students’ conceptual learning: electricity in our daily life unit]. Pamukkale Üniversitesi Eğitim Fakültesi Dergisi, 37(1), 63–77.

  • van der Valk, T., van Driel, J. H., & de Vos, W. (2007). Common characteristics of models in present-day scientific practice. Res Sci Educ, 37(4), 469–488. https://doi.org/10.1007/s11165-006-9036-3.

    Article  Google Scholar 

  • Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. J Res Sci Teach, 47(8), 952–977. https://doi.org/10.1002/tea.20358.

    Article  Google Scholar 

  • Visintainer, T., & Linn, M. (2015). Sixth-grade students’ progress in understanding the mechanisms of global climate change. J Sci Educ Technol, 24(2), 287–310. https://doi.org/10.1007/s10956-014-9538-0.

    Article  Google Scholar 

  • Voss, J. F., Jeffery, B., Means, M. L., Greene, T. R., & Ahwesh, E. (1986). Informal reasoning and subject matter knowledge in the solving of economics problems by naive and novice individuals. Cogn Instr, 3(4), 269–302.

    Article  Google Scholar 

  • Witte, E. (1972). Field research on complex decision-making processes—the phase theorem. Int Stud Manag Organ, 2(2), 157–182.

    Google Scholar 

  • Wu, Y.-T., & Tsai, C.-C. (2007). High school students’ informal reasoning on a socio-scientific issue: qualitative and quantitative analyses. Int J Sci Educ, 29(9), 1163–1187. https://doi.org/10.1080/09500690601083375.

    Article  Google Scholar 

  • Yang, F. Y., & Anderson, O. R. (2003). Senior high school students’ preference and reasoning modes about nuclear energy use. Int J Sci Educ, 25(2), 221–244.

    Article  Google Scholar 

  • Yazan, B. (2015). Three approaches to case study methods in education: Yin, Meriam, and Stake. Qual Rep, 20(2), 134–152. https://doi.org/10.1007/BF00243003.

    Article  Google Scholar 

  • Zohar, A., & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. J Res Sci Teach, 39(1), 35–62.

    Article  Google Scholar 

Download references

Acknowledgments

This paper is based on the first author's master's thesis, completed under the direction of the second author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahadir Namdar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, A., Namdar, B. The Effect of Modeling Activities on Grade 5 Students’ Informal Reasoning About a Real-Life Issue. Res Sci Educ 51 (Suppl 1), 429–442 (2021). https://doi.org/10.1007/s11165-019-09896-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-019-09896-8

Keywords

Navigation