Abstract
Wi-Fi radiation is a type of radio frequency electromagnetic radiation (RF-EMR) that refers to the transfer of energy by radio waves. Nowadays, exposure to RF radiation is widespread including wireless internet connection (Wi-Fi) routers and cell phones. The proliferation of devices emitting RF radiation has entailed some public and media-generated controversy, although scientific evidence has not pointed to the existence of risk. Using the theoretical perspectives of science literacy, public engagement with science, and science media literacy, this work examines public engagement with science-related media reports in a context involving risk. A qualitative design was followed to address multiple viewpoints including an analysis of an authentic primetime TV program concerning the risks of Wi-Fi, its messages, and frames, solicited a public response to the coverage via interviews and decision-making simulation (n = 20), and unsolicited public response based on social media discussions (n = 315 comments). Our findings suggest that a lack of relevant scientific knowledge does not seem to be related to participants’ general scientific literacy among people with higher education. Moreover, interviewees did not place much emphasis on having adequate knowledge in making their decision. These findings emphasize that we need to expand our understanding of the different ways that make scientific knowledge relevant when making decisions on scientific issues that relate directly to everyday life.
This is a preview of subscription content, access via your institution.

Notes
Wi-Fi is a radio frequency local area connection technology in the 5–10-cm wavelength range. Within the non-ionizing (NIR) spectrum, we find RF (radio frequency) and ELF (extremely low frequencies). Prevalently used appliances all emit radiation in the RF spectrum; these include cell phones and towers, microwaves, and Wi-Fi routers. An example for a source of ELF is power supply lines.
As opposed to ionizing radiation (IR) which has enough energy to break chemical bonds and remove electrons.
Percentages were calculated based on data published in https://data.gov.il/ and on information provided on the ICT program website: http://sites.education.gov.il/cloud/home/tikshuv/Pages/mida_clali_tikshuv.aspx (retrieved in December 2018).
337,600 households throughout. As an illustration of the program’s popularity, on that same evening, a European soccer match was viewed in 267,200 households and a well-known travel and cooking show was viewed in 278,600 households on competing channels: http://rashut2.org.il/info_tv.asp.
Physics curriculum in the 1990s (when most of our interviewees were in school) was mostly limited to self-selected teens who studied high level physics (in high school), and electromagnetic radiation was not included in other curriculum.
Facebook Pages-Specific Policies, retrieved from: https://www.facebook.com/policies/pages_groups_events/, accessed on May 2, 2019.
The emphasis in quotes both here and elsewhere is ours.
References
Allchin, D. (2011). Evaluating knowledge of the nature of (whole) science. Science Education, 95(3), 518–542. https://doi.org/10.1002/sce.20432.
Anderson, A. (2009). Media, politics and climate change: towards a new research agenda. Sociology Compass, 3(2), 166–182. https://doi.org/10.1111/j.1751-9020.2008.00188.x.
Australian Radiation Protection and Nuclear Safety Agency. (n.d.). What is radiation? ARPANSA. Retrieved August 28, 2018, from https://www.arpansa.gov.au/understanding-radiation/what-is-radiation
Aven, T. (2018). An emerging new risk analysis science: foundations and implications. Risk Analysis, 38(5), 876–888. https://doi.org/10.1111/risa.12899.
Balzano, Q., & Sheppard, A. R. (2011). The influence of the precautionary principle on science-based decision-making: questionable applications to risks of radiofrequency fields. https://doi.org/10.1080/13669870210154485.
Baram-Tsabari, A., & Schejter, A. M. (2019). New Media: A Double-Edged Sword in Support of Public Engagement with Science. In Y. Kali, A. Baram-Tsabari, & A. M. Schejter (Eds.), Learning In a Networked Society (pp. 79–95). https://doi.org/10.1007/978-3-030-14610-8_5
Baram-Tsabari, A., & Segev, E. (2015). The half-life of a "teachable moment": The case of Nobel laureates. Public Understanding of Science, 24(3), 326–337. https://doi.org/10.1177/0963662513491369
Boehmert, C., Wiedemann, P., Pye, J., & Croft, R. (2017). The effects of precautionary messages about electromagnetic fields from mobile phones and base stations revisited: the role of recipient characteristics. Risk Analysis. https://doi.org/10.1111/risa.12634.
Borraz, O. (2011). From risk to the government of uncertainty: the case of mobile telephony. Journal of Risk Research, 14(8), 969–982. https://doi.org/10.1080/13669877.2011.574316.
Bräscher, A.-K., Raymaekers, K., Van den Bergh, O., & Witthöft, M. (2017). Are media reports able to cause somatic symptoms attributed to WiFi radiation? An experimental test of the negative expectation hypothesis. Environmental Research, 156, 265–271. https://doi.org/10.1016/J.ENVRES.2017.03.040.
Chang, C. (2015). Motivated processing: how people perceive news covering novel or contradictory health research findings. Science Communication, 37(5), 602–634 Retrieved from http://scx.sagepub.com.dcu.idm.oclc.org/content/37/5/602.
Choi, J., Hwang, J.-H., Lim, H., Joo, H., Yang, H.-S., Lee, Y.-H., Eeftens, M., Struchen, B., Röösli, M., Lee, A. K., Choi, H. D., Kwon, J. H., & Ha, M. (2018). Assessment of radiofrequency electromagnetic field exposure from personal measurements considering the body shadowing effect in Korean children and parents. Science of the Total Environment, 627, 1544–1551. https://doi.org/10.1016/j.scitotenv.2018.01.318.
Christensen, C. (2009). Risk and school science education. Studies in Science Education, 45(2), 205–223. https://doi.org/10.1080/03057260903142293.
Covello, V. T. (2011). Risk communication, radiation, and radiological emergencies: strategies, tools, and techniques. Health Physics, 101(5), 511–530. https://doi.org/10.1097/HP.0b013e3182299549.
Croft, R (2018). ICNIRP radiofrequency guidelines public consultation version. Retrieved from: https://www.icnirp.org/cms/upload/consultation_upload/ICNIRPCroft_PCD_BioEM2018.pdf
Davis, P. R., & Russ, R. S. (2015). Dynamic framing in the communication of scientific research: texts and interactions. Journal of Research in Science.
Drews, S., & Van Den Bergh, J. C. J. M. (2015). What explains public support for climate policies? A review of empirical and experimental studies. Climate Policy, 16, 855–876. https://doi.org/10.1080/14693062.2015.1058240.
Duncan, R., Chinn, C., & Barzilai, S. (2018). Grasp of evidence: problematizing and expanding the next generation science standards’ conceptualization of evidence. Journal of Research in Science Teaching, 55(7), 907–937. https://doi.org/10.1002/tea.21468.
Eldridge-Thomas, B., & Rubin, G. J. (2013). Idiopathic environmental intolerance attributed to electromagnetic fields: a content analysis of British newspaper reports. PLoS One, 8(6), e65713. https://doi.org/10.1371/journal.pone.0065713.
Elvers, H.-D., Jandrig, B., Grummich, K., & Tannert, C. (2009). Mobile phones and health: media coverage study of German newspapers on possible adverse health effects of mobile phone use. Health, Risk & Society, 11(2), 165–179. https://doi.org/10.1080/13698570902784273.
Faasse, K., Gamble, G., Cundy, T., & Petrie, K. J. (2012). Impact of television coverage on the number and type of symptoms reported during a health scare: a retrospective pre-post observational study. BMJ Open, 2(4), e001607. https://doi.org/10.1136/bmjopen-2012-001607.
Feinstein, N. (2011). Salvaging science literacy. Science Education, 95, 168–185. https://doi.org/10.1002/sce.20414.
Fensham, P. J. (2014). Scepticism and trust: Two counterpoint essentials in science education for complex socio-scientific issues. Cultural Studies of Science Education, 9(3), 649–661. https://doi.org/10.1007/s11422-013-9560-1.
Fogarty, A. S., Holland, K., Imison, M., Blood, R. W., Chapman, S., & Holding, S. (2011). Communicating uncertainty—how Australian television reported H1N1 risk in 2009: a content analysis. BMC Public Health, 11(1), 181. https://doi.org/10.1186/1471-2458-11-181.
Foster, K. R., & Moulder, J. E. (2013). Wi-Fi and health: review of current status of research. Health Physics, 105(6), 561–575. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24162060.
Freudenstein, F., Wiedemann, P. M., & Varsier, N. (2015). Exposure knowledge and risk perception of RF EMF. Frontiers in Public Health, 2, 289. https://doi.org/10.3389/fpubh.2014.00289.
Hargittai, E., Füchslin, T., & Schäfer, M. S. (2018). How do young adults engage with science and research on social media? Some preliminary findings and an agenda for future research. Social Media + Society, 4(3), 205630511879772. https://doi.org/10.1177/2056305118797720.
Hedendahl, L. K., Carlberg, M., Koppel, T., & Hardell, L. (2017). Measurements of radiofrequency radiation with a body-borne exposimeter in Swedish schools with Wi-Fi. Frontiers in Public Health, 5, 279. https://doi.org/10.3389/fpubh.2017.00279.
Hine, C. (2011). Internet research and unobtrusive methods. Social Research UPDATE, 61, 1–4.
Internet World Stats. (2018). Israel. Retrieved from: https://www.internetworldstats.com/me/il.htm
Kahle, K., Sharon, A. J., & Baram-Tsabari, A. (2016). Footprints of fascination: Digital traces of public engagement with particle physics on CERN’s social media platforms. PLoS ONE, 11(5), 1–22. https://doi.org/10.1371/journal.pone.0156409
Karipidis, K., Henderson, S., Wijayasinghe, D., Tjong, L., & Tinker, R. (2017). Exposure to radiofrequency electromagnetic fields from Wi-Fi in Australian schools. Radiation Protection Dosimetry, 175(4), 432–439. https://doi.org/10.1093/rpd/ncw370.
Kheifets, L., Repacholi, M., Saunders, R., & van Deventer, E. (2005). The sensitivity of children to electromagnetic fields. Pediatrics, 116(2), E303–E313.
Kinslow, A. T., & Sadler, T. D. (2018). Making science relevant: using socio-scientific issues to foster critical thinking. The Science Teacher, 86(1), 40–45 Retrieved from www.nsta.org/highschool.
Laslo, E., Baram-Tsabari, A., & Lewenstein, B. V. (2011). A growth medium for the message: online science journalism affordances for exploring public discourse of science and ethics. Journalism: Theory, Practice & Criticism, 12(7), 847–870.
Layton, D., Jenkins, E., Macgill, S., & Davey, A. (1993). Inarticulate science? Perspectives on the public understanding of science and some implications for science education. Nafferton, Driffield, East Yorkshire: Studies in Education.
Lee, R. M. (2000). Introduction to unobtrusive methods. In R. M. Lee (Ed.), Unobtrusive methods in social research (pp. 1–16). Buckingham: Open University Press.
Leung, J. S. C., Wong, A. S. L., & Yung, B. H. W. (2017). Evaluation of science in the media by non-science majors. International Journal of Science Education, Part B, 7(3), 219–236. https://doi.org/10.1080/21548455.2016.1206983.
Marshall, C., & Rossman, G. B. (2016). Designing qualitative research (6th ed.). Thousand Oaks: Sage.
McClune, B., & Jarman, R. (2010). Critical reading of science-based news reports: establishing a knowledge, skills and attitudes framework. International Journal of Science Education, 32(6), 727–752. https://doi.org/10.1080/09500690902777402.
Ministry of Health. (2018). Trends in prevalence of brain and central nervous system tumors, Israel, 1990-2014. Retrieved from: https://www.health.gov.il/PublicationsFiles/brain1990_2014.pdf (Hebrew).
Ministry of Science Technology and Space. (2018). Perceptions and attitudes of the public in Israel on science, technology and space (pp. 83).
National Academies of Sciences Engineering and Medicine. (2016). Science literacy: concepts, contexts, and consequences (p. 10.17226/23595). Washington, D.C.: The National Academies Press.
National Science Board. (2016). Science and engineering indicators. Arlington VA.
National Science Board. (2018). Science and engineering indicators 2018. Alexandria, VA: National Science Foundation Retrieved from https://www.nsf.gov/statistics/indicators/.
National Toxicology Program. (2018). Cell phone radio frequency radiation studies. Retrieved from: https://www.niehs.nih.gov/health/materials/cell_phone_radiofrequency_radiation_studies_508.pdf
OECD Digital Economy Outlook 2017 (2017a). OECD. https://doi.org/10.1787/9789264276284-en. Retrieved from: http://www.oecd.org/internet/oecd-digital-economy-outlook-2017-9789264276284-en.htm.
OECD (2017b), “Israel”, in education at a glance 2017: OECD indicators, OECD Publishing, Paris. https://doi.org/10.1787/eag-2017-53-en. Retrieved from: http://www.oecdilibrary.org/docserver/download/9617041ec053.pdf?expires=1514800219&id=id&accname=guest&checksum=AA6F0F91CA1E007F072B8CCE27147CE9.
Orr, D., Baram-Tsabari, A., & Landsman, K. (2016). Social media as a platform for health-related public debates and discussions: the Polio vaccine on Facebook. Israel Journal of Health Policy Research, 5(1), 34. https://doi.org/10.1186/s13584-016-0093-4
Patton, M. Q. (2015). Qualitative research and evaluation methods: integrating theory and practice (4th ed.). Thousand Oaks: SAGE Publications.
Pew Research Center. (2019). Smartphone ownership is growing rapidly around the world, but not always equally. (2019). Retrieved from: https://www.pewglobal.org/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/ last visited on May 5th, 2019.
Piotrkowski, C. S. (1979). Work and the family system. New York, NY: The Free Press.
Reid, G., & Norris, S. P. (2016). Scientific media education in the classroom and beyond: a research agenda for the next decade. Cultural Studies of Science Education, 11(1), 147–166. https://doi.org/10.1007/s11422-015-9709-1.
Roberts, D. A. (2007). Scientific literacy/science literacy. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 729–780). Mahwah, NJ: Lawrence Erlbaum Associates.
Roberts, D. A., & Bybee, R. W. (2014). Scientific literacy, science literacy, and science education. In G. Lederman, Norman & K. Abell, Sandra (Eds.), Handbook of research on science education, Volume II (2nd ed., pp. 545–558). https://doi.org/10.4324/9780203097267-38.
Rosentrater, L. D., Saelensminde, I., Ekström, F., Böhm, G., Bostrom, A., Hanss, D., & O’connor, R. E. (2013). Efficacy trade-offs in individuals’ support for climate change policies. Environment and Behavior, 45(8), 935–970. https://doi.org/10.1177/0013916512450510.
Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36(1), 1–44. https://doi.org/10.1080/03057260108560166.
Sadler, T. D., & Donnelly, L. A. (2006). Socioscientific argumentation: the effects of content knowledge and morality. International Journal of Science Education, 28(12), 1463–1488.
Sandoval, W. A., Sodian, B., Koerber, S., & Wong, J. (2014). Developing children’s early competencies to engage with science. Educational Psychologist, 49(2), 139–152. https://doi.org/10.1080/00461520.2014.917589.
Shauli S, & Baram-Tsabari, A (2019). The usefulness of science knowledge for parents of hearing-impaired children. Public Understanding of Science, 28(1), 19–37. https://doi.org/10.1177/0963662518772503
Strum, L. A., Mays, R. M., & Zimet, G. D. (2005). Parental beliefs and decision making about child and adolescent immunization: From polio to sexually transmitted infections. Developmental and Behavioral Pediatrics., 26(6), 441–452.
Timotiejevic, L., & Barnett, J. (2006). Managing the possible health risks of mobile telecommunications: public understanding of precautionary action and advice. Health, Risk & Society, 8(2), 143–164.
Townsend, L., & Wallace, C. (n.d.). Social media research: a guide to ethics. Retrieved from https://www.gla.ac.uk/media/media_487729_en.pdf
Tseng, A. S. (2018). Students and evaluation of web-based misinformation about vaccination: critical reading or passive acceptance of claims? International Journal of Science Education, Part B, 8(3), 250–265. https://doi.org/10.1080/21548455.2018.1479800.
UNESCO. (2005). The precautionary principle: World commission on the ethics of scientific knowledge and technology. Paris: UNESCO Retrieved from: http://unesdoc.unesco.org/images/0013/001395/139578e.pdf.
van den Brul, C. (1995). Perceptions of science: how scientists and others view the media reporting of science. Studies in Science Education, 25(1), 211–237. https://doi.org/10.1080/03057269508560055.
Weeth Feinstein, N. (2014). Making sense of autism: progressive engagement with science among parents of young, recently diagnosed autistic children. Public Understanding of Science, 23(5), 592–609. https://doi.org/10.1177/0963662512455296.
Weeth Feinstein, N., Allen, S., & Jenkins, E. (2013). Outside the pipeline: reimagining science education for nonscientists. Science, 340(6130), 314–317. https://doi.org/10.1126/science.1230855.
Wiedemann, P. M., Schuetz, H., Boerner, F., Clauberg, M., Croft, R., Shukla, R., Kikkawa, T., Kemp, R., Gutteling, J. M., de Villiers, B., da Silva Medeiros, F. N., & Barnett, J. (2013). When precaution creates misunderstandings: the unintended effects of precautionary information on perceived risks, the EMF case. Risk Analysis. https://doi.org/10.1111/risa.12034.
Wood, A., & Roy, C. (2017). Overview: the electromagnetic spectrum and nonionizing radiation. In A. Wood & K. Karipidis (Eds.), Non-ionizing radiation protection (pp. 1–9). Hoboken, NJ: John Wiley & Sons, Inc.. https://doi.org/10.1002/9781119284673.ch1.
World Bank. (2018). Israel: country data. Retrieved from: https://data.worldbank.org/country/israel?view=chart.
Acknowledgments
The authors would like to thank the graduate students who took part in this project as part of a course assignment and who contributed their interviews to our database.
Funding
This work was supported by the Ministry of Science and Technology under Grant Number 3-13697.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix 1. Scenario
“Your child’s school is about to join the National ICT Program. The children will receive tablet computers which are connected to the internet via Wi-Fi, and they will use them daily during lessons. Some parents are worried that the radiation may have health implications, while others say there is no danger, and there is a great educational benefit in the program. Tomorrow there will be a special parents’ meeting to vote about the use of Wi-Fi in the school, and you have to decide how to vote using any available resources you might have in everyday life (including searching the internet and consulting other people). First, please watch this TV program which was broadcast recently on national TV. Then you’ll have another 30 minutes to look for additional information. You don’t have to use all of the time and can tell me whenever you make your decision.”
Appendix 2. Interview Protocol
Decision: At the end of the process (after half an hour, or when the interviewee has finished):
-
1.
What have you decided? How will you vote? Why?
-
2.
What was your impression of the show you watched? Could you have made your decision just based on the show?
-
3.
Did any of the statements said on the show affect your decision?
-
4.
What questions are still open, as far as you are concerned?
Scientific Knowledge in Context
-
5.
What is the difference between ionizing radiation and non-ionizing radiation?
-
6.
Does ionizing radiation harm the human body?
-
7.
If so, in what way does ionizing radiation harm the human body?
-
8.
Does non-ionizing radiation harm the human body?
-
9.
If so, in what way does non-ionizing radiation harm the human body?
-
10.
What is radiation sensitivity (electromagnetic hypersensitivity)? Do researchers agree that this phenomenon exists?
-
11.
How is it possible to find out if radiation sensitivity is a real phenomenon?
-
12.
How is it possible for people to think different things about a scientific topic?
-
13.
How can someone tell apart a person with well-founded beliefs from a person with less well-founded beliefs?
Additional Sources
-
14.
What other information sources did you choose?
-
15.
Why did you choose these sources?
-
16.
How would you rate their credibility?
-
17.
How would you rate their expertise in the matter?
-
18.
Were there other sources of information you wanted to rely on? Why? What prevented you from using them?
Scientific Knowledge and Decision-Making
-
19.
Did you have knowledge/information that you felt you were missing for making a better decision? What is it?
-
20.
Did you have prior knowledge that helped you make a decision? What is it?
-
21.
Was there any scientific knowledge you were missing so that you could better understand the problem and make a decision? What is it?
-
22.
Was there any scientific knowledge that helped you understand the problem and make a decision? What is it? Please give an example of how this knowledge supported you in making a decision.
-
23.
If or when you come across a medical, scientific or technological problem, do you search for information? Where (internet, literature, experts)? Can you please give me specific details about the websites and books you use?
-
24.
Can you share an example of a situation where you needed information and how you obtained it?
-
25.
In what circumstances, if at all, did your scientific background help you to solve a problem? (Understand what information you are missing, obtain that information, assess its credibility, ask the doctor a question.). Please give examples.
-
26.
In what circumstances did you think that if you had more scientific knowledge it would have helped you? (If you encountered such situations.)
Rights and permissions
About this article
Cite this article
Dalyot, K., Sharon, A.J., Orr, D. et al. Public Engagement with Science in Everyday Life: Perceptions of Wi-Fi Radiation Risks in Schools. Res Sci Educ 51 (Suppl 2), 1035–1054 (2021). https://doi.org/10.1007/s11165-019-09894-w
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11165-019-09894-w
Keywords
- Scientific literacy
- RF radiation
- Public engagement with science
- Social media