Skip to main content
Log in

Gestalt and Functionality as Independent Dimensions of Mental Models in Science

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

In teaching sciences, models are often used to introduce, elaborate or simplify real-world phenomena or concepts. It is, however, often the case that misconceptions arise from or are facilitated by these teaching models during their transition to mental models of the individual learners. For instance, models are often seen as direct replicas of something real—scaled versions of reality. Even though for architectural models, this approach is sufficient, in physics, other model types must also be taken into account. In particular, in quantum physics, the ability for abstract model building is essential. In our exploratory study with 3108 participants, the dispositions towards models in physics in general and models of the atomic hull in particular were analysed. Based on this quantitative data, two independent dimensions of the participants’ mental models were extracted: (i) Functional Fidelity and (ii) Fidelity of Gestalt. Based on these empirical findings, four main types of mental models are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.quantumreflections.net/

References

  • Dangur, V., Avargil, S., Peskin, U., & Dori, Y. J. (2014). Learning quantum chemistry via a visual-conceptual approach: students’ bidirectional textual and visual understanding. Chemistry Education Research and Practice, 15, 297–310.

    Article  Google Scholar 

  • Dutke, S. (1994). Mentale Modelle beim Erinnern sprachlich beschriebener räumlicher Anordnungen: Zeitliche Aspekte der Modellkonstruktion und -nutzung. Zeitschrift für Experimentelle und Angewandte Psychologie, 41, 523–548.

    Google Scholar 

  • Fischler, H., & Lichtfeldt, M. (1992). Modern physics and students; conceptions. International Journal of Science Education, 14(2), 181–190.

    Article  Google Scholar 

  • Griffiths, A.K. & Preston, K.R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611–628.

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28, 799–822.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509–534.

    Article  Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: a case study of multiple model use in grade 11 chemistry. Science Education, 84(3), 352–381.

    Article  Google Scholar 

  • Hemphill, J.F. (2003). Interpreting the magnitudes of correlation coefficients. American Psychologist, 58(1), 78–79.

  • Ingham, A. I., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13(2), 203–215.

    Article  Google Scholar 

  • Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts. Science Education, 87, 257–280.

    Article  Google Scholar 

  • Ke, J.-L., Monk, M., & Duschl, R. (2005). Learning Introductary Quantum Physics: sensory-motor experiences and mental models. International Journal of Science Education, 27(13), 1571–1594.

    Article  Google Scholar 

  • Krijtenburg-Lewerissa, K., Pol, H. J., Brinkman, A., & Joolingen, W. R. (2017). Insights into teaching quantum mechanics in secondary and lower undergraduate education. Physical Review Physics Education Research, 13, 010109.

    Article  Google Scholar 

  • Lichtfeldt, M. (1992). Schülervorstellungen in der Quantenphysik und ihre möglichen Veränderungen durch Unterricht. Essen: Westarp (Dissertation Freie Universität Berlin).

  • McDole, A. (2012). Wenn Bäche hören und Regentropfen fühlen: kindlicher Animismus -Erlebenswirklichkeit oder psychologisches Konstrukt? Marburg: Tectum.

    Google Scholar 

  • McKagan, S. B., Perkins, K. K., & Wieman, C. E. (2008). Why we should teach the Bohr model and how to teach it effectively. Physical Review Physics Education Research, 4, 010103.

    Article  Google Scholar 

  • Müller, R. (2003). Quantenphysik in der Schule. Berlin: Logos.

    Google Scholar 

  • Müller, R., & Wiesner, H. (2002). Teaching quantum mechanics on an introductory level. American Journal of Physics, 70, 200–209.

    Article  Google Scholar 

  • Nakiboglu, C. (2003). Instructional misconceptions of Turkish prospective chemistry teachers about orbitals and hybridization. Chemistry Education Research and Practice, 4(2), 171–188.

    Article  Google Scholar 

  • Nicoll, G. (2001). A report of undergraduate’s bonding misconceptions. International Journal of Science Education, 23(7), 707–730.

    Article  Google Scholar 

  • Papageorgiou, G., Markos, M., & Nikolaos, Z. (2016). Students’ representations of the atomic structure – the effect of some individual differences in particular task contexts. Chemistry Education Research and Practice, 17, 209–219.

    Article  Google Scholar 

  • Park, E. J., & Light, G. (2009). Identifying atomic structure as a threshold concept: student mental models and troublesomeness. International Journal of Science Education, 31(2), 233–258.

    Article  Google Scholar 

  • Petri, J., & Niedderer, H. (1998). A learning pathway in high school level quantum atomic physics. International Journal of Science Education, 20, 1075–1088.

    Article  Google Scholar 

  • Rickheit, G., & Sichelschmidt, L. (1999). Mental models: some questions, some answers, some suggestions. In G. Rickheit & C. Habel (Eds.), Mental models in discourse processing and reasoning (pp. 3–49). Amsterdam: North-Holland.

    Google Scholar 

  • Schecker, H., Wilhelm, T., Hopf, M., & Duit, R. (2018). Schülervorstellungen und Physikunterricht - Ein Lehrbuch für Studium, Referendariat und Unterrichtspraxis. Wiesbaden: Springer Spektrum.

    Book  Google Scholar 

  • SPSS 25. (2017). IBM SPSS Statistics for Windows, Version 25.0. IBM Corp. Armonk: IBM Corp.

    Google Scholar 

  • Stevens, S. Y., Delgato, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687–715.

    Article  Google Scholar 

  • Taber, K. S. (2002a). Conceptualizing quanta—illuminating the ground state of student understanding of atomic orbitals. International Journal of Science Education, 3(2), 145–158.

    Google Scholar 

  • Taber, K. S. (2002b). Compounding quanta: probing the frontiers of student understanding of molecular orbitals. International Journal of Science Education, 3(2), 159–173.

    Google Scholar 

  • Taber, K. S. (2005). Learning Quanta: barriers to stimulating transitions in student understanding of orbital ideas. Science Education, 89, 94–116.

    Article  Google Scholar 

  • Treagust, D., Chittleborough, G., & Mamiala, T. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24, 357–368.

    Article  Google Scholar 

  • Tsaparlis, G., & Papaphotis, G. (2009). High-school students‘ conceptual difficulties and attempts at conceptual change: the case of basic quantum chemical concepts. International Journal of Science Education, 31, 895–930.

    Article  Google Scholar 

  • Zarkadis, N., Papageorgiou, G., & Stamovlasis, D. (2017). Studying the consistency between and within the student mental models for atomic structure. Chemistry Education Research and Practice, 18, 893–902.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for support for the realization of the online-survey to the Hans Riegel Stiftung, SciViews, Thilo Körkel of Spektrum der Wissenschaft and Breaking Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malte S. Ubben.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubben, M.S., Heusler, S. Gestalt and Functionality as Independent Dimensions of Mental Models in Science. Res Sci Educ 51, 1349–1363 (2021). https://doi.org/10.1007/s11165-019-09892-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-019-09892-y

Keywords

Navigation