Advertisement

Professional Development and Use of Digital Technologies by Science Teachers: a Review of Theoretical Frameworks

  • Geraldo W. Rocha Fernandes
  • António M. Rodrigues
  • Carlos Alberto Ferreira
Article

Abstract

This article aims to characterise the research on science teachers’ professional development programs that support the use of Information and Communication Technologies (ICTs) and the main trends concerning the theoretical frameworks (theoretical foundation, literature review or background) that underpin these studies. Through a systematic review of the literature, 76 articles were found and divided into two axes on training science teachers and the use of digital technologies with their categories. The first axis (characterisation of articles) presents the category key features that characterise the articles selected (major subjects, training and actions for the professional development and major ICT tools and digital resources). The second axis (trends of theoretical frameworks) has three categories organised in theoretical frameworks that emphasise the following: (a) the digital technologies, (b) prospects of curricular renewal and (c) cognitive processes. It also characterised a group of articles with theoretical frameworks that contain multiple elements without deepening them or that even lack a theoretical framework that supports the studies. In this review, we found that many professional development programs for teachers still use inadequate strategies for bringing about change in teacher practices. New professional development proposals are emerging with the objective of minimising such difficulties and this analysis could be a helpful tool to restructure those proposals.

Keywords

Literature review Theoretical frameworks Science teachers Professional development Information and communication technologies 

References

  1. Anastopoulou, S., Sharples, M., & Baber, C. (2011). An evaluation of multimodal interactions with technology while learning science concepts. British Journal of Educational Technology, 42(2), 266–290.  https://doi.org/10.1111/j.1467-8535.2009.01017.x.CrossRefGoogle Scholar
  2. Anderson, J., & Barnett, M. (2011). Using video games to support pre-service elementary teachers learning of basic physics principles. Journal of Science Education and Technology, 20(4), 347–362.  https://doi.org/10.1007/s10956-010-9257-0.CrossRefGoogle Scholar
  3. Annetta, L. A., Frazier, W. M., Folta, E., Holmes, S., Lamb, R., & Cheng, M.-T. (2012). Science teacher efficacy and extrinsic factors toward professional development using video games in a design-based research model: the next generation of STEM learning. Journal of Science Education and Technology, 22(1), 47–61.  https://doi.org/10.1007/s10956-012-9375-y.CrossRefGoogle Scholar
  4. Athanassios, J. (2010). Designing and implementing an integrated technological pedagogical science knowledge framework for science teachers professional development. Computers & Education, 55(3), 1259–1269.  https://doi.org/10.1016/j.compedu.2010.05.022.CrossRefGoogle Scholar
  5. Bailenson, J. N., Yee, N., Blascovich, J., Beall, A. C., Lundblad, N., & Jin, M. (2008). The use of immersive virtual reality in the learning sciences: digital transformations of teachers, students, and social context. Journal of the Learning Sciences, 17(1), 102–141.  https://doi.org/10.1080/10508400701793141.CrossRefGoogle Scholar
  6. Barak, M., & Dori, Y. (2011). Science education in primary schools: is an animation worth a thousand pictures? Journal of Science Education and Technology, 20(5), 608–620.  https://doi.org/10.1007/s10956-011-9315-2.CrossRefGoogle Scholar
  7. Barak, M., Ashkar, T., & Dori, Y. J. (2011). Learning science via animated movies: its effect on students’ thinking and motivation. Computers & Education, 56(3), 839–846.  https://doi.org/10.1016/j.compedu.2010.10.025.CrossRefGoogle Scholar
  8. Barton, R. (2005). Supporting teachers in making innovative changes in the use of computer-aided practical work to support concept development in physics education. International Journal of Science Education, 27(3), 345–365.  https://doi.org/10.1080/0950069042000230794.CrossRefGoogle Scholar
  9. Bell, R. L., & Trundle, K. C. (2008). The use of a computer simulation to promote scientific conceptions of moon phases. Journal of Research in Science Teaching, 45(3), 346–372.  https://doi.org/10.1002/tea.CrossRefGoogle Scholar
  10. Bell, R. L., Maeng, J. L., & Binns, I. C. (2013). Learning in context: technology integration in a teacher preparation program informed by situated learning theory. Journal of Research in Science Teaching, 50(3), 348–379.  https://doi.org/10.1002/tea.21075.CrossRefGoogle Scholar
  11. Çalik, M., Ebenezer, J., Özsevgeç, T., Küçük, Z., & Artun, H. (2014). Improving science student teachers’ self-perceptions of fluency with innovative technologies and scientific inquiry abilities. Journal of Science Education and Technology, 24(4), 448–460.  https://doi.org/10.1007/s10956-014-9529-1.CrossRefGoogle Scholar
  12. Campbell, T., Zuwallack, R., Longhurst, M., Shelton, B. E., & Wolf, P. G. (2014). An examination of the changes in science teaching orientations and technology-enhanced tools for student learning in the context of professional development. International Journal of Science Education, 36(11), 1815–1848.  https://doi.org/10.1080/09500693.2013.879622.CrossRefGoogle Scholar
  13. Campbell, T., Longhurst, M. L., Wang, S.-K., Hsu, H.-Y., & Coster, D. C. (2015). Technologies and reformed-based science instruction: the examination of a professional development model focused on supporting science teaching and learning with technologies. Journal of Science Education and Technology, 24(5), 562–579.  https://doi.org/10.1007/s10956-015-9548-6.CrossRefGoogle Scholar
  14. Cavanaugh, C., & Dawson, K. (2010). Design of online professional development in science content and pedagogy: a pilot study in Florida. Journal of Science Education and Technology, 19, 438–446.  https://doi.org/10.1007/s10956-010-9210-2.CrossRefGoogle Scholar
  15. Chan, K. K. H., & Yung, B. H. W. (2015). On-site pedagogical content knowledge development. International Journal of Science Education, 37(8), 1246–1278.  https://doi.org/10.1080/09500693.2015.1033777.CrossRefGoogle Scholar
  16. Chang, C., & Tsai, C. (2005). The interplay between different forms of CAI and students’ preferences of learning environment in the secondary science class. Science Education, 89(5), 707–724.  https://doi.org/10.1002/sce.20072.CrossRefGoogle Scholar
  17. Chang, Y., Jang, S.-J., & Chen, Y.-H. (2014). Assessing university students’ perceptions of their physics instructors’ TPACK development in two contexts. British Journal of Educational Technology, n/a-n/a.  https://doi.org/10.1111/bjet.12192.
  18. Charlier, B., et al. (2007). Transformation of the visions on educational technology research. Bruxelles: De Boeck.Google Scholar
  19. Chen, Y.-H., Jang, S.-J., & Chen, P.-J. (2015). Using wikis and collaborative learning for science teachers’ professional development. Journal of Computer Assisted Learning, 31(4), 330–344.  https://doi.org/10.1111/jcal.12095.CrossRefGoogle Scholar
  20. Childs, A., Sorensen, P., & Twidle, J. (2011). Using the Internet in science teaching? Issues and challenges for initial teacher education. Technology, Pedagogy and Education, 20(2), 143–160.  https://doi.org/10.1080/1475939X.2011.588413.CrossRefGoogle Scholar
  21. Connolly, T. M., Boyle, E. A., MacArthur, E., Hainey, T., & Boyle, J. M. (2012). A systematic literature review of empirical evidence on computer games and serious games. Computers & Education, 59(2), 661–686.  https://doi.org/10.1016/j.compedu.2012.03.004.CrossRefGoogle Scholar
  22. Dalacosta, K., Kamariotaki-Paparrigopoulou, M., Palyvos, J. A., & Spyrellis, N. (2009). Multimedia application with animated cartoons for teaching science in elementary education. Computers & Education, 52(4), 741–748.  https://doi.org/10.1016/j.compedu.2008.11.018.CrossRefGoogle Scholar
  23. Dawson, V. (2008). Use of information communication technology by early career science teachers in Western Australia. International Journal of Science Education, 30(2), 203–219.  https://doi.org/10.1080/09500690601175551.CrossRefGoogle Scholar
  24. de Winter, J., Winterbottom, M., & Wilson, E. (2010). Developing a user guide to integrating new technologies in science teaching and learning: teachers’ and pupils’ perceptions of their affordances. Technology, Pedagogy and Education, 19, 261–267.  https://doi.org/10.1080/1475939X.2010.491237.CrossRefGoogle Scholar
  25. Dixon-Woods, M. (2010). Systematic reviews and qualitative methods. In Qualitative research: theory, method and practice (3rd ed., pp. 331–346). London: SAGE Publications Ltd.Google Scholar
  26. Donnelly, D. F., & Boniface, S. (2013). Consuming and creating: early-adopting science teachers’ perceptions and use of a wiki to support professional development. Computers & Education, 68, 9–20.  https://doi.org/10.1016/j.compedu.2013.04.023.CrossRefGoogle Scholar
  27. Donnelly, D., McGarr, O., & O’Reilly, J. (2011). A framework for teachers’ integration of ICT into their classroom practice. Computers & Education, 57(2), 1469–1483.  https://doi.org/10.1016/j.compedu.2011.02.014.CrossRefGoogle Scholar
  28. Donnelly, D., O’Reilly, J., & McGarr, O. (2012). Enhancing the student experiment experience: visible scientific inquiry through a virtual chemistry laboratory. Research in Science Education, 43(4), 1–22.  https://doi.org/10.1007/s11165-012-9322-1.Google Scholar
  29. Dori, Y. J., & Belcher, J. (2005). How does technology-enabled active learning affect undergraduate students’ understanding of electromagnetism concepts? Journal of the Learning Sciences, 14(2), 243–279.  https://doi.org/10.1207/s15327809jls1402_3.CrossRefGoogle Scholar
  30. Dori, Y. J., Tal, R. T., & Peled, Y. (2002). Characteristics of science teachers who incorporate web-based teaching. Research in Science Education, 32(4), 511–547.  https://doi.org/10.1023/A:1022499422042.CrossRefGoogle Scholar
  31. Eastwood, J. L., & Sadler, T. D. (2013). Teachers’ implementation of a game-based biotechnology curriculum. Computers & Education, 66, 11–24.  https://doi.org/10.1016/j.compedu.2013.02.003.CrossRefGoogle Scholar
  32. Ebenezer, J., Kaya, O. N., & Ebenezer, D. L. (2011). Engaging students in environmental research projects: perceptions of fluency with innovative technologies and levels of scientific inquiry abilities. Journal of Research in Science Teaching, 48(1), 94–116.  https://doi.org/10.1002/tea.20387.CrossRefGoogle Scholar
  33. Ekanayake, T. M. S. S. K. Y., & Wishart, J. M. (2014). Developing teachers’ pedagogical practice in teaching science lessons with mobile phones. Technology, Pedagogy and Education, 23(2), 131–150.  https://doi.org/10.1080/1475939X.2013.810366.CrossRefGoogle Scholar
  34. Ekanayake, S. Y., & Wishart, J. (2015). Integrating mobile phones into teaching and learning: a case study of teacher training through professional development workshops. British Journal of Educational Technology, 46(1), 173–189.  https://doi.org/10.1111/bjet.12131.CrossRefGoogle Scholar
  35. El-Hani, C. N., & Greca, I. M. (2012). ComPratica: a virtual community of practice for promoting biology teachers’ professional development in Brazil. Research in Science Education, 43(4), 1327–1359.  https://doi.org/10.1007/s11165-012-9306-1.CrossRefGoogle Scholar
  36. Engeström, Y. (1999). Activity theory and individual and social transformation. In Perspectives on activity theory. Cambridge University Press. Recuperado de.  https://doi.org/10.1017/CBO9780511812774.003.
  37. Geelan, D. (2012). Teacher explanation of physics concepts: a video study. Research in Science Education, 43(5), 1751–1762.  https://doi.org/10.1007/s11165-012-9336-8.CrossRefGoogle Scholar
  38. Gelbart, H., Brill, G., & Yarden, A. (2009). The impact of a web-based research simulation in bioinformatics on students’ understanding of genetics. Research in Science Education, 39(5), 725–751.  https://doi.org/10.1007/s11165-008-9101-1.CrossRefGoogle Scholar
  39. Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. Journal of the Learning Sciences, 14(1), 69–110.  https://doi.org/10.1207/s15327809jls1401_4.CrossRefGoogle Scholar
  40. Haydn, T. A., & Barton, R. (2007). Common needs and different agendas: how trainee teachers make progress in their ability to use ICT in subject teaching. Some lessons from the UK. Computers & Education, 49(4), 1018–1036.CrossRefGoogle Scholar
  41. Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated expertise in integrating use of multimedia simulation into secondary science teaching. International Journal of Science Education, 28(7), 701–732.  https://doi.org/10.1080/09500690500404656.CrossRefGoogle Scholar
  42. Hoban, G., & Nielsen, W. (2013). Learning science through creating a ‘Slowmation’: a case study of preservice primary teachers. International Journal of Science Education, 35(1), 119–146.  https://doi.org/10.1080/09500693.2012.670286.CrossRefGoogle Scholar
  43. Hoban, G., Loughran, J., & Nielsen, W. (2011). Slowmation: preservice elementary teachers representing science knowledge through creating multimodal digital animations. Journal of Research in Science Teaching, 48(9), 985–1009.  https://doi.org/10.1002/tea.20436.CrossRefGoogle Scholar
  44. Howard, S. K., Chan, A., & Caputi, P. (2015). More than beliefs: subject areas and teachers’ integration of laptops in secondary teaching. British Journal of Educational Technology, 46(2), 360–369.  https://doi.org/10.1111/bjet.12139.CrossRefGoogle Scholar
  45. Hsu, S. (2010). Developing a scale for teacher integration of information and communication technology in grades 1–9. Journal of Computer Assisted Learning, 26(3), 175–189.  https://doi.org/10.1111/j.1365-2729.2010.00348.x.CrossRefGoogle Scholar
  46. Jang, S. (2006). The effects of incorporating web-assisted learning with team teaching in seventh-grade science classes. International Journal of Science Education, 28(6), 615–632.  https://doi.org/10.1080/09500690500339753.CrossRefGoogle Scholar
  47. Jang, S.-J., & Chen, K.-C. (2010). From PCK to TPACK: developing a transformative model for pre-service science teachers. Journal of Science Education and Technology, 19(6), 553–564.  https://doi.org/10.1007/s10956-010-9222-y.CrossRefGoogle Scholar
  48. Janssen, N., & Lazonder, A. W. (2015). Implementing innovative technologies through lesson plans: what kind of support do teachers prefer? Journal of Science Education and Technology, 24(6), 910–920.  https://doi.org/10.1007/s10956-015-9573-5.CrossRefGoogle Scholar
  49. Kahveci, A., Gilmer, P. J., & Southerland, S. A. (2008). Understanding chemistry professors’ use of educational technologies: an activity theoretical approach. International Journal of Science Education, 30(3), 325–351.  https://doi.org/10.1080/09500690601188638.CrossRefGoogle Scholar
  50. Kang, H., & Lundeberg, M. A. (2010). Participation in science practices while working in a multimedia case-based environment. Journal of Research in Science Teaching, 47(9), 1116–1136.  https://doi.org/10.1002/tea.20371.CrossRefGoogle Scholar
  51. Katz, P. (2011). A case study of the use of internet photobook technology to enhance early childhood “scientist” identity. Journal of Science Education and Technology, 20(5), 525–536.  https://doi.org/10.1007/s10956-011-9301-8.CrossRefGoogle Scholar
  52. Khan, S. (2010). New pedagogies on teaching science with computer simulations. Journal of Science Education and Technology, 20(3), 215–232.  https://doi.org/10.1007/s10956-010-9247-2.CrossRefGoogle Scholar
  53. Kim, H., & Herbert, B. (2012). Inquiry resources collection as a boundary object supporting meaningful collaboration in a wiki-based scientist-teacher community. Journal of Science Education and Technology, 21(4), 504–512.  https://doi.org/10.1007/s10956-011-9342-z.CrossRefGoogle Scholar
  54. Kim, H., Miller, H., Herbert, B., Pedersen, S., & Loving, C. (2012). Using a wiki in a scientist-teacher professional learning community: impact on teacher perception changes. Journal of Science Education and Technology, 21(4), 440–452.  https://doi.org/10.1007/s10956-011-9336-x.CrossRefGoogle Scholar
  55. Klieger, A., Ben-Hur, Y., & Bar-Yossef, N. (2009). Integrating laptop computers into classroom: attitudes, needs, and professional development of science teachers—a case study. Journal of Science Education and Technology, 19, 187–198.  https://doi.org/10.1007/s10956-009-9191-1.CrossRefGoogle Scholar
  56. Klosterman, M., Sadler, T., & Brown, J. (2012). Science teachers’ use of mass media to address socio-scientific and sustainability issues. Research in Science Education, 42(1), 51–74.  https://doi.org/10.1007/s11165-011-9256-z.CrossRefGoogle Scholar
  57. Kumar, D., Thomas, P., Morris, J., Tobias, K., Baker, M., & Jermanovich, T. (2011). Effect of current electricity simulation supported learning on the conceptual understanding of elementary and secondary teachers. Journal of Science Education and Technology, 20(2), 111–115.  https://doi.org/10.1007/s10956-010-9229-4.CrossRefGoogle Scholar
  58. Lavonen, J., Juuti, K., & Meisalo, V. (2003). Designing a user-friendly microcomputer-based laboratory package through the factor analysis of teacher evaluations. International Journal of Science Education, 25(12), 1471–1487.  https://doi.org/10.1080/0950069032000072755.CrossRefGoogle Scholar
  59. Lawless, K. A., & Pellegrino, J. W. (2007). Professional development in integrating technology into teaching and learning: knowns, unknowns, and ways to pursue better questions and answers. Review of Educational Research, 77(4), 575–614.  https://doi.org/10.3102/0034654307309921.CrossRefGoogle Scholar
  60. Lee, S. W., Tsai, C., Wu, Y., Tsai, M., Liu, T., Hwang, F., et al. (2011). Internet-based science learning: a review of journal publications. International Journal of Science Education, 33(14), 1893–1925.  https://doi.org/10.1080/09500693.2010.536998.CrossRefGoogle Scholar
  61. Lin, T.-C., Tsai, C.-C., Chai, C. S., & Lee, M.-H. (2012). Identifying science teachers’ perceptions of technological pedagogical and content knowledge (TPACK). Journal of Science Education and Technology, 22(3), 325–336.  https://doi.org/10.1007/s10956-012-9396-6.CrossRefGoogle Scholar
  62. Lindgren, R., & Schwartz, D. L. (2009). Spatial learning and computer simulations in science. International Journal of Science Education, 31(3), 419–438.  https://doi.org/10.1080/09500690802595813.CrossRefGoogle Scholar
  63. Ling Wong, S., Wai Yung, B. H., Cheng, M. W., Lam, K. L., & Hodson, D. (2006). Setting the stage for developing pre-service teachers’ conceptions of good science teaching: the role of classroom videos. International Journal of Science Education, 28(1), 1–24.  https://doi.org/10.1080/09500690500239805.CrossRefGoogle Scholar
  64. Liu, L., & Hmelo-Silver, C. E. (2009). Promoting complex systems learning through the use of conceptual representations in hypermedia. Journal of Research in Science Teaching, 46(9), 1023–1040.  https://doi.org/10.1002/tea.20297.CrossRefGoogle Scholar
  65. Maeng, J. L., Mulvey, B. K., Smetana, L. K., & Bell, R. L. (2013). Preservice teachers’ TPACK: using technology to support inquiry instruction. Journal of Science Education and Technology, 22(6), 838–857.  https://doi.org/10.1007/s10956-013-9434-z.CrossRefGoogle Scholar
  66. Marino, M. T., Israel, M., Beecher, C. C., & Basham, J. D. (2012). Students’ and teachers’ perceptions of using video games to enhance science instruction. Journal of Science Education and Technology, 22(5), 667–680.  https://doi.org/10.1007/s10956-012-9421-9.CrossRefGoogle Scholar
  67. Marshall, J. A., & Young, E. S. (2006). Preservice teachers’ theory development in physical and simulated environments. Journal of Research in Science Teaching, 43(9), 907–937.  https://doi.org/10.1002/tea.20124.CrossRefGoogle Scholar
  68. McConnell, T. J., Parker, J. M., Eberhardt, J., Koehler, M. J., & Lundeberg, M. A. (2012). Virtual professional learning communities: teachers’ perceptions of virtual versus face-to-face professional development. Journal of Science Education and Technology, 22(3), 267–277.  https://doi.org/10.1007/s10956-012-9391-y.CrossRefGoogle Scholar
  69. Mishra, P., & Koehler, M. (2006). Technological pedagogical content knowledge: a framework for teacher knowledge. Teachers College, 108(06), 1017–1054.CrossRefGoogle Scholar
  70. Moraes, R., & Galiazzi, M. d. C. (2011). Análise Textual Discursiva (2 a ). Editora Unijuí: Ijuí.Google Scholar
  71. Moreira, M. A., & Greca, I. M. (2003). Conceptual change: critical analysis and proposals in the light of the meaningful learning theory. Ciência & Educação, 9(2), 301–315.  https://doi.org/10.1590/S1516-73132003000200010.CrossRefGoogle Scholar
  72. Mortimer, E. F. (1995). Conceptual change or Conceptual Profile change? Science & Education, 4(3), 267–285.  https://doi.org/10.1007/BF00486624
  73. Nielsen, W., & Hoban, G. (2015). Designing a digital teaching resource to explain phases of the moon: a case study of preservice elementary teachers making a slowmation. Journal of Research in Science Teaching, 52(9), 1207–1233.  https://doi.org/10.1002/tea.21242.CrossRefGoogle Scholar
  74. Nielsen, W., Miller, K. A., & Hoban, G. (2014). Science teachers’ response to the digital education revolution. Journal of Science Education and Technology, 24(4), 417–431.  https://doi.org/10.1007/s10956-014-9527-3.CrossRefGoogle Scholar
  75. Plass, J. L., Milne, C., Homer, B. D., Schwartz, R. N., Hayward, E. O., Jordan, T., et al. (2012). Investigating the effectiveness of computer simulations for chemistry learning. Journal of Research in Science Teaching, 49(3), 394–419.  https://doi.org/10.1002/tea.21008.CrossRefGoogle Scholar
  76. Pombo, L., Smith, M., Abelha, M., Caixinha, H., & Costa, N. (2012). Evaluating an online e-module for Portuguese primary teachers: trainees’ perceptions. Technology, Pedagogy and Education, 21(1), 21–36.  https://doi.org/10.1080/1475939X.2011.589156.CrossRefGoogle Scholar
  77. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211–227.  https://doi.org/10.1002/sce.3730660207.CrossRefGoogle Scholar
  78. Price, S., Davies, P., Farr, W., Jewitt, C., Roussos, G., & Sin, G. (2013). Fostering geospatial thinking in science education through a customisable smartphone application. British Journal of Educational Technology, n/a–n/a.  https://doi.org/10.1111/bjet.12000.
  79. Pringle, R. M., Dawson, K., & Ritzhaupt, A. D. (2015). Integrating science and technology: using technological pedagogical content knowledge as a framework to study the practices of science teachers. Journal of Science Education and Technology, 24(5), 648–662.  https://doi.org/10.1007/s10956-015-9553-9.CrossRefGoogle Scholar
  80. Rodrigues, S. (2006). Pedagogic practice integrating primary science and elearning: the need for relevance, recognition, resource, reflection, readiness and risk. Technology, Pedagogy and Education, 15(2), 175–189.  https://doi.org/10.1080/14759390600769193.CrossRefGoogle Scholar
  81. Rogers, L., & Finlayson, H. (2004). Developing successful pedagogy with information and communications technology: how are science teachers meeting the challenge? Technology, Pedagogy and Education, 13(3), 287–305.  https://doi.org/10.1080/14759390400200184.CrossRefGoogle Scholar
  82. Rogers, L., & Newton, L. (2001). Integrated learning systems—an “open” approach. International Journal of Science Education, 23(4), 405–422.  https://doi.org/10.1080/09500690120039.CrossRefGoogle Scholar
  83. Roth, K. J., Garnier, H. E., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. I. Z. (2011). Videobased lesson analysis: effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48(2), 117–148.  https://doi.org/10.1002/tea.20408.CrossRefGoogle Scholar
  84. Rutten, N., van der Veen, J. T., & van Joolingen, W. R. (2015). Inquiry-based whole-class teaching with computer simulations in physics. International Journal of Science Education, 37(8), 1225–1245.  https://doi.org/10.1080/09500693.2015.1029033.CrossRefGoogle Scholar
  85. Şad, S. N., & Göktaş, Ö. (2014). Preservice teachers’ perceptions about using mobile phones and laptops in education as mobile learning tools. British Journal of Educational Technology, 45(4), 606–618.  https://doi.org/10.1111/bjet.12064.CrossRefGoogle Scholar
  86. Saka, Y. (2013). Who are the science teachers that seek professional development in research experience for teachers (RET’s)? Implications for teacher professional development. Journal of Science Education and Technology, 22(6), 934–951.  https://doi.org/10.1007/s10956-013-9440-1.CrossRefGoogle Scholar
  87. She, H.-C., Cheng, M.-T., Li, T.-W., Wang, C.-Y., Chiu, H.-T., Lee, P.-Z., et al. (2012). Web-based undergraduate chemistry problem-solving: the interplay of task performance, domain knowledge and web-searching strategies. Computers & Education, 59(2), 750–761.  https://doi.org/10.1016/j.compedu.2012.02.005.CrossRefGoogle Scholar
  88. Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  89. Silverman, D. (2001). Interpreting qualitative data: methods for analysing talk, text and interaction (2nd ed.). London: SAGE Publications Ltd.Google Scholar
  90. Silverman, D. (2010). Qualitative research: theory, method and practice (3rd ed.). London: SAGE.Google Scholar
  91. Skinner, N. C., & Preece, P. F. W. (2003). The use of information and communications technology to support the teaching of science in primary schools. International Journal of Science Education, 25(2), 205–219.  https://doi.org/10.1080/09500690210126757.CrossRefGoogle Scholar
  92. Smithenry, D. W., Prouty, J., & Capobianco, B. M. (2012). Collaboratively exploring the use of a video case-based book as a professional development tool. Journal of Science Education and Technology, 22(5), 735–750.  https://doi.org/10.1007/s10956-012-9427-3.CrossRefGoogle Scholar
  93. So, W. W. M. (2012). Creating a framework of a resource-based e-learning environment for science learning in primary classrooms. Technology, Pedagogy and Education, 21(3), 317–335.  https://doi.org/10.1080/1475939X.2012.719399.CrossRefGoogle Scholar
  94. Songer, N. B., Lee, H.-S., & Kam, R. (2002). Technology-rich inquiry science in urban classrooms: what are the barriers to inquiry pedagogy? Journal of Research in Science Teaching, 39(2), 128–150.  https://doi.org/10.1002/tea.10013.CrossRefGoogle Scholar
  95. Sorensen, P., Twidle, J., Childs, A., & Godwin, J. (2007). The use of the Internet in science teaching: a longitudinal study of developments in use by student-teachers in England. International Journal of Science Education, 29(13), 1605–1627.  https://doi.org/10.1080/09500690601137676.CrossRefGoogle Scholar
  96. Squire, K., & Jan, M. (2007). Mad City Mystery: developing scientific argumentation skills with a place-based augmented reality game on handheld computers. Journal of Science Education and Technology, 16(1), 5–29.  https://doi.org/10.1007/s10956-006-9037-z.CrossRefGoogle Scholar
  97. Starbek, P., Starčič Erjavec, M., & Peklaj, C. (2010). Teaching genetics with multimedia results in better acquisition of knowledge and improvement in comprehension. Journal of Computer Assisted Learning, 26(3), 214–224.  https://doi.org/10.1111/j.1365-2729.2009.00344.x.CrossRefGoogle Scholar
  98. Strømme, T. A., & Furberg, A. (2015). Exploring teacher intervention in the intersection of digital resources, peer collaboration, and instructional design. Science Education, 99(5), 837–862.  https://doi.org/10.1002/sce.21181.CrossRefGoogle Scholar
  99. Stylianidou, F., Boohan, R., & Ogborn, J. (2005). Science teachers’ transformations of the use of computer modeling in the classroom: using research to inform training. Science Education, 89(1), 56–70.  https://doi.org/10.1002/sce.20043.CrossRefGoogle Scholar
  100. Syh-Jong, J. (2008). Innovations in science teacher education: effects of integrating technology and team-teaching strategies. Computers & Education, 51(2), 646–659.  https://doi.org/10.1016/j.compedu.2007.07.001.CrossRefGoogle Scholar
  101. Tolentino, L., Birchfield, D., Megowan-Romanowicz, C., Johnson-Glenberg, M. C., Kelliher, A., & Martinez, C. (2009). Teaching and learning in the mixed-reality science classroom. Journal of Science Education and Technology, 18, 501–517.  https://doi.org/10.1007/s10956-009-9166-2.CrossRefGoogle Scholar
  102. Tondeur, J., Valcke, M., & Van Braak, J. (2008). A multidimensional approach to determinants of computer use in primary education: teacher and school characteristics. Journal of Computer Assisted Learning, 24(6), 494–506.  https://doi.org/10.1111/j.1365-2729.2008.00285.x.CrossRefGoogle Scholar
  103. Twidle, J., Sorensen, P., Childs, A., Godwin, J., & Dussart, M. (2006). Issues, challenges and needs of student science teachers in using the Internet as a tool for teaching. Technology, Pedagogy and Education, 15(2), 207–221.  https://doi.org/10.1080/14759390600769680.CrossRefGoogle Scholar
  104. Ucar, S., & Trundle, K. C. (2011). Conducting guided inquiry in science classes using authentic, archived, web-based data. Computers & Education, 57(2), 1571–1582.  https://doi.org/10.1016/j.compedu.2011.02.007.CrossRefGoogle Scholar
  105. Valtonen, T., Hacklin, S., Kontkanen, S., Hartikainen-Ahia, A., Kärkkäinen, S., & Kukkonen, J. (2013). Pre-service teachers’ experiences of using social software applications for collaborative inquiry. Computers & Education, 69, 85–95.  https://doi.org/10.1016/j.compedu.2013.07.001.CrossRefGoogle Scholar
  106. Valtonen, T., Kukkonen, J., Kontkanen, S., Sormunen, K., Dillon, P., & Sointu, E. (2015). The impact of authentic learning experiences with ICT on pre-service teachers’ intentions to use ICT for teaching and learning. Computers & Education, 81, 49–58.  https://doi.org/10.1016/j.compedu.2014.09.008.CrossRefGoogle Scholar
  107. Voogt, J. (2009). How different are ICT-supported pedagogical practices from extensive and non-extensive ICT-using science teachers? Education and Information Technologies, 14(4), 325–343.  https://doi.org/10.1007/s10639-009-9092-1.CrossRefGoogle Scholar
  108. Voogt, J. (2010). Teacher factors associated with innovative curriculum goals and pedagogical practices: differences between extensive and non-extensive ICT-using science teachers. Journal of Computer Assisted Learning, 26(6), 453–464.  https://doi.org/10.1111/j.1365-2729.2010.00373.x.CrossRefGoogle Scholar
  109. Waight, N., & Abd-El-Khalick, F. (2012). Nature of technology: implications for design, development, and enactment of technological tools in school science classrooms. International Journal of Science Education, 34(18), 2875–2905.  https://doi.org/10.1080/09500693.2012.698763.CrossRefGoogle Scholar
  110. Waight, N., Liu, X., Gregorius, R. M., Smith, E., & Park, M. (2014). Teacher conceptions and approaches associated with an immersive instructional implementation of computer-based models and assessment in a secondary chemistry classroom. International Journal of Science Education, 36(3), 467–505.  https://doi.org/10.1080/09500693.2013.787506.CrossRefGoogle Scholar
  111. Warwick, P., Mercer, N., Kershner, R., & Staarman, J. K. (2010). In the mind and in the technology: the vicarious presence of the teacher in pupil’s learning of science in collaborative group activity at the interactive whiteboard. Computers & Education, 55(1), 350–362.  https://doi.org/10.1016/j.compedu.2010.02.001.CrossRefGoogle Scholar
  112. Webb, M. E. (2005). Affordances of ICT in science learning: implications for an integrated pedagogy. International Journal of Science Education, 27(6), 705–735.  https://doi.org/10.1080/09500690500038520.CrossRefGoogle Scholar
  113. Yarden, H., & Yarden, A. (2011). Studying biotechnological methods using animations: the teacher’s role. Journal of Science Education and Technology, 20(6), 689–702.  https://doi.org/10.1007/s10956-010-9262-3.CrossRefGoogle Scholar
  114. Yeh, Y.-F., Hsu, Y.-S., Wu, H.-K., Hwang, F.-K., & Lin, T.-C. (2014a). Developing and validating technological pedagogical content knowledge-practical (TPACK-practical) through the Delphi survey technique. British Journal of Educational Technology, 45(4), 707–722.  https://doi.org/10.1111/bjet.12078.CrossRefGoogle Scholar
  115. Yeh, Y.-F., Lin, T.-C., Hsu, Y.-S., Wu, H.-K., & Hwang, F.-K. (2014b). Science teachers’ proficiency levels and patterns of TPACK in a practical context. Journal of Science Education and Technology, 24(1), 78–90.  https://doi.org/10.1007/s10956-014-9523-7.CrossRefGoogle Scholar
  116. Zacharia, Z. (2003). Beliefs, attitudes, and intentions of science teachers regarding the educational use of computer simulations and inquiry-based experiments in physics. Journal of Research in Science Teaching, 40(8), 792–823.  https://doi.org/10.1002/tea.10112.CrossRefGoogle Scholar
  117. Zacharia, Z. C. (2007). Comparing and combining real and virtual experimentation: an effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23(2), 120–132.  https://doi.org/10.1111/j.1365-2729.2006.00215.x.CrossRefGoogle Scholar
  118. Zheng, R. Z., Yang, W., Garcia, D., & McCadden, E. p. (2008). Effects of multimedia and schema induced analogical reasoning on science learning. Journal of Computer Assisted Learning, 24(6), 474–482.  https://doi.org/10.1111/j.1365-2729.2008.00282.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Ciências Biológicas – DCBio, Faculdade de Ciências Biológica e da Saúde – FCBSUniversidade Federal dos Vales do Jequinhonha e Mucuri – UFVJMDiamantinaBrazil
  2. 2.Laboratório de Pedagogia, Faculdade de Motricidade Humana, Universidade de Lisboa e UIDEFUnidade de Investigação e Desenvolvimento em Educação e Formação, Instituto de Educação, Universidade de LisboaLisbonPortugal
  3. 3.Faculdade de Motricidade HumanaUniversidade de LisboaOeirasPortugal
  4. 4.Faculdade de Motricidade, Instituto de EducaçãoUniversidade de Lisboa e UIDEF, Universidade de LisboaLisbonPortugal

Personalised recommendations