Constructing the “Energy” Concept and Its Social Use by Students of Primary Education in Greece
Article
First Online:
- 31 Downloads
Keywords
Energy Primary education Mental representations Teaching sequence Innovative teaching Constructivist teachingReferences
- Agabra, J., Gautherin, J., Lemeignan, G., Pezet, R., & Verlhac, M. (1979). Sciences Physiques. Collection Libres Parcours. Paris: Hachette.Google Scholar
- Anderson, A. (1986). The experiential gestalt of causation: a common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155–172.CrossRefGoogle Scholar
- Astolfi, J.-P. (1993). Trois paradigmes pour la recherche en didactique. Revue Française de Pédagogie, 103, 5–18.CrossRefGoogle Scholar
- Bächtold, M. (2017). How should energy be defined throughout schooling? Research in Science Education. https://doi.org/10.1007/s11165-016-9571-5.
- Baehr, H.-D. (1978). Thermodynamik. Berlin: Springer-Verlag.CrossRefGoogle Scholar
- Bécu-Robinault, K. (1997). Activités de modélisation des élèves en situation de travaux pratiques traditionnels : introduction expérimentale du concept de puissance. Didaskalia, 11, 7–37.Google Scholar
- Besson, U., & De Ambrosis, A. (2014). Teaching energy concepts by working on themes of cultural and environmental value. Science & Education, 23(6), 1309–1338.Google Scholar
- Chen, R. F., Eisenkraft, A., Fortus, D., Krajcik, J., Neumann, K., Nordine, J., & Scheff, A. (2014). Teaching and learning of energy in K-12 education. Cham: Springer International Publishing.CrossRefGoogle Scholar
- Chevallard, Υ. (1985). La transposition didactique. Grenoble: La Pensée Sauvage.Google Scholar
- CLISP. (1987). Approaches to teaching energy. Internal report: University of Leeds.Google Scholar
- Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education (7th ed.). London: Routledge / Falmer, Taylor & Francis Group.Google Scholar
- Colonnese, D., Heron, P., Michelini, M., Santi, L., & Stefanel, A. (2012). A vertical pathway for teaching and learning the energy concept. Review of Science, Mathematics and ICT Education, 6(1), 21–50.Google Scholar
- Domenech, J., Gil-Perez, D., Gras-Marti, A., Martinez-Torregrosa, J., Guisasola, G., Salinas, J., Trumper, R., Valdes, P., & Vilches, A. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science & Education, 16(1), 43–64.CrossRefGoogle Scholar
- Driver, R., & Millar, R. (1986). Energy matters. University of Leeds.Google Scholar
- Falk, G., & Hermann, F. (1981). Neue Physik, Das energiebuch. Hannover: Schroedel.Google Scholar
- Falk, G., Hermann, F., & Bruno Schmid, G. (1983). Energy forms or energy carriers? American Journal of Physics, 51(12), 1074–1077.CrossRefGoogle Scholar
- Field, A. (2009). Discovering statistics using SPSS. Sage.Google Scholar
- Haber-Schaim, U. (1983). Energy. New Jersey: Prentice-Hall, Inc..Google Scholar
- Halbwachs, F. (1971). Causalité linéaire et causalité circulaire en physique. In M. Bunge, F. Halbwachs, T. Kuhn, J. Piaget, & L. Rosenfeld (Eds.), Les théories de la causalité. Paris: Presses Universitaires de France.Google Scholar
- Hammer, D., Goldberg, F., & Fargason, S. (2012). A vertical pathway for teaching and learning the energy concept. Review of Science, Mathematics and ICT Education, 6(1), 51–72.Google Scholar
- Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 71(256), 33–40.Google Scholar
- Koliopoulos, D., & Tiberghien, A. (1986). Elements d'une bibliographie concernant l'enseignement de l'energie au niveau des colleges. Aster, Institut National de Recherche Pédagogique, 2, 167–178.Google Scholar
- Koliopoulos, D., & Ravanis, K. (1998). L’enseignement de l’energie au college vu par les enseignants. Grille d’analyse de leurs conceptions. Aster, Institut National de Recherche Pédagogique, 26, 165–182.Google Scholar
- Koliopoulos, D., & Ravanis, K. (2000a). Reflexions methodologiques sur la formation d’une culture concernant le concept d’energie a travers l’education formelle. Revue de Recherches en Éducation : SPIRALE, 26, 73–86.CrossRefGoogle Scholar
- Koliopoulos, D., & Ravanis, K. (2000b). Elaboration et evaluation du contenu conceptuel d'un programme constructiviste concernant l'approche energetique des phenomenes mecaniques. Didaskalia, 16, 33–56.Google Scholar
- Koliopoulos, D., & Ravanis, K. (2001). Didactic implications resulting from students’ ideas about energy: an approach to mechanical, thermal and electrical phenomena. Themes in Education, 2(2-3), 161–173.Google Scholar
- Koliopoulos, D., & Constantinou, C. (2005). The pendulum as presented in school science text-books of Greece and Cyprus. Science & Education, 14(1), 59–73.CrossRefGoogle Scholar
- Koliopoulos, D. (2006). Issues in Science Education. Athens: Metaixmio [In Greek].Google Scholar
- Koliopoulos, D., & Argyropoulou, M. (2011). Constructing qualitative energy concepts in a formal educational context with 6–7-year-old students. Review of Science, Mathematics and ICT Education, 5(1), 63–80.Google Scholar
- Koliopoulos, D., Aduriz-Bravo, A., & Ravanis, K. (2012). El ≪analisis del contenido conceptual≫ de los curriculos y programas de ciencias: una posible herramienta de mediacion entre la didactica y la ensenanza de las ciencias. Enseñanza de las Ciencias, 29(3), 315–324.Google Scholar
- Koliopoulos, D., & Constantinou, C. (2012). Energy in education. Review of Science, Mathematics and ICT Education, 6(1), 3–6.Google Scholar
- Koliopoulos, D. (2014). Is it possible to teach energy in preschool education? In F. Tasar (Ed.), Proceedings of the WCPE Conference (pp. 457–461). Ankara: Gazi Universitesi.Google Scholar
- Koulaidis, V., Dimopoulos, K., & Sklaveniti, S. (2002). Analyzing the texts of science and technology: school science textbooks and daily press articles in the public domain. In M. Kalantzis, G. Varnava-Skoura, & B. Cope (Eds.), Learning for the future (pp. 209–240). Sydney: Common Ground.Google Scholar
- Kuhn, T. (1977). Energy conservation as an example of simultaneous discovery. In T. Kuhn (Ed.), The essential tension (pp. 66–104). Chicago: The University of Chicago Press.Google Scholar
- Lacy, S., Tobin, R. G., Wiser, M., & Crissman, S. (2014). Looking through the energy lens: a proposed learning progression for energy in grades 3–5. In R. F. Chen, A. Eisenkraft, D. Fortus, J. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education (pp. 246–265). New York: Springer.Google Scholar
- Lemeignan, G., & Weil-Barais, A. (1994). A developmental approach to cognitive change in mechanics. International Journal of Science Education, 16(1), 99–120.CrossRefGoogle Scholar
- Lijnse, P. (1990). Energy between the life-world of pupils and the world of physics. Science Education, 74(5), 571–583.CrossRefGoogle Scholar
- Martinand, J.-L. (1986). Connaitre et transformer la matière. Berne: Peter Lang.Google Scholar
- Meheut, M., & Psillos, D. (2004). Teaching-leaning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515–535.CrossRefGoogle Scholar
- Meli, K., Koliopoulos, D., Lavidas, K., & Papalexiou, G. (2016). Upper secondary school students’ understanding of adiabatic compression. Review of Science, Mathematics and ICT Education, 10(2), 131–147.Google Scholar
- Millar, R. (1989). Constructivism criticisms. International Journal of Science Education, 11, 587–596.CrossRefGoogle Scholar
- Millar, R. (2005). Teaching about energy (Research Paper 2005/11). York: Department of Educational Studies, University of York.Google Scholar
- Papadouris, N., & Constantinou, C. P. (2011). A philosophically informed teaching proposal on the topic of energy for students aged 11–14. Science & Education, 20(10), 961–997. 635Google Scholar
- Piaget, J., & Garcia, R. (1971). Les explications causales. Paris: PUF.Google Scholar
- Piaget, J., & Garcia, R. (1983). Psychogenèse et histoire des sciences. Paris: Flammarion.Google Scholar
- Ravanis, K., Papamichael, Y., & Koulaidis, V. (2002). Social marking and conceptual change: the conception of light for ten-year old. Journal of Science Education, 3(1), 15–18. 639Google Scholar
- Rozier, S., & Viennot, L. (1991). Students’ reasoning in thermodynamics. International Journal of Science Education, 13(2), 159–170.CrossRefGoogle Scholar
- Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational Researcher, 38(5), 329–342.CrossRefGoogle Scholar
- Sissamberi, N. & Author 2, (2015).Google Scholar
- Solomon, J. (1985). Learning and evaluation: a study of school children’s views on the social uses of energy. Social Studies of Science, 15, 343–371.CrossRefGoogle Scholar
- Solomon, J. (1994). The rise and fall of constructivism. Studies in Science Education, 23(1), 1–19.CrossRefGoogle Scholar
- Tiberghien, A. (1996). Construction of prototypical situations in teaching the energy concept. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe. Current issues and themes (pp. 100–114). London: The Falmer Press.Google Scholar
- Tiberghien, A. (1997). Learning and teaching: differentiation and relation. Research in Science Education, 27(3), 359–382.CrossRefGoogle Scholar
- Tiberghien, A. (2000). Designing teaching situations in the secondary school. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: the contribution of research (pp. 27–47). Buckingham: Open University Press.Google Scholar
- Tiberghien, A., & Megalakaki, O. (1995). Characterization of a modelling activity for a first qualitative approach to the energy concept. European Journal of Psychology of Education, 10(4), 369–383.CrossRefGoogle Scholar
- Viglietta, V. (1990). A more ‘efficient’ approach to energy teaching. International Journal of Science Education, 12(5), 491–500.CrossRefGoogle Scholar
- Zemansky, M. W., & Dittman, R. H. (1987). Heat and thermodynamics. New York: McGraw-Hill.Google Scholar
Copyright information
© Springer Science+Business Media B.V., part of Springer Nature 2018