Advertisement

Constructing the “Energy” Concept and Its Social Use by Students of Primary Education in Greece

  • Nikos Delegkos
  • Dimitris Koliopoulos
Article
  • 55 Downloads

Introduction

During the last 30 years or so, in Greece and worldwide too, there has been significant development in research focused on the introduction of the energy concept at several educational levels, as a result of the concept’s scientific importance and the social interest it induces (Domenech et al. 2007; Driver & Millar 1986; Millar 2005; Koliopoulos and Constantinou 2012; Chen et al. 2014; Bächtold 2017). In the late 1970s, the first relevant curricula made their appearance as educational systems in industrial countries reacted to the oil crisis and, more generally, to the energy crisis that had stricken them at the beginning of that decade. At the same time, research groups, spawned mostly from the abruptly expanding field of Science Education, were examining students’ notions and mental representations of the energy concept. Thus, the link between the potential development of innovative teaching interventions aimed at the learners’ cognitive growth and the proper...

Keywords

Energy Primary education Mental representations Teaching sequence Innovative teaching Constructivist teaching 

References

  1. Agabra, J., Gautherin, J., Lemeignan, G., Pezet, R., & Verlhac, M. (1979). Sciences Physiques. Collection Libres Parcours. Paris: Hachette.Google Scholar
  2. Anderson, A. (1986). The experiential gestalt of causation: a common core to pupils’ preconceptions in science. European Journal of Science Education, 8(2), 155–172.CrossRefGoogle Scholar
  3. Astolfi, J.-P. (1993). Trois paradigmes pour la recherche en didactique. Revue Française de Pédagogie, 103, 5–18.CrossRefGoogle Scholar
  4. Bächtold, M. (2017). How should energy be defined throughout schooling? Research in Science Education.  https://doi.org/10.1007/s11165-016-9571-5.
  5. Baehr, H.-D. (1978). Thermodynamik. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  6. Bécu-Robinault, K. (1997). Activités de modélisation des élèves en situation de travaux pratiques traditionnels : introduction expérimentale du concept de puissance. Didaskalia, 11, 7–37.Google Scholar
  7. Besson, U., & De Ambrosis, A. (2014). Teaching energy concepts by working on themes of cultural and environmental value. Science & Education, 23(6), 1309–1338.Google Scholar
  8. Chen, R. F., Eisenkraft, A., Fortus, D., Krajcik, J., Neumann, K., Nordine, J., & Scheff, A. (2014). Teaching and learning of energy in K-12 education. Cham: Springer International Publishing.CrossRefGoogle Scholar
  9. Chevallard, Υ. (1985). La transposition didactique. Grenoble: La Pensée Sauvage.Google Scholar
  10. CLISP. (1987). Approaches to teaching energy. Internal report: University of Leeds.Google Scholar
  11. Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education (7th ed.). London: Routledge / Falmer, Taylor & Francis Group.Google Scholar
  12. Colonnese, D., Heron, P., Michelini, M., Santi, L., & Stefanel, A. (2012). A vertical pathway for teaching and learning the energy concept. Review of Science, Mathematics and ICT Education, 6(1), 21–50.Google Scholar
  13. Domenech, J., Gil-Perez, D., Gras-Marti, A., Martinez-Torregrosa, J., Guisasola, G., Salinas, J., Trumper, R., Valdes, P., & Vilches, A. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science & Education, 16(1), 43–64.CrossRefGoogle Scholar
  14. Driver, R., & Millar, R. (1986). Energy matters. University of Leeds.Google Scholar
  15. Falk, G., & Hermann, F. (1981). Neue Physik, Das energiebuch. Hannover: Schroedel.Google Scholar
  16. Falk, G., Hermann, F., & Bruno Schmid, G. (1983). Energy forms or energy carriers? American Journal of Physics, 51(12), 1074–1077.CrossRefGoogle Scholar
  17. Field, A. (2009). Discovering statistics using SPSS. Sage.Google Scholar
  18. Haber-Schaim, U. (1983). Energy. New Jersey: Prentice-Hall, Inc..Google Scholar
  19. Halbwachs, F. (1971). Causalité linéaire et causalité circulaire en physique. In M. Bunge, F. Halbwachs, T. Kuhn, J. Piaget, & L. Rosenfeld (Eds.), Les théories de la causalité. Paris: Presses Universitaires de France.Google Scholar
  20. Hammer, D., Goldberg, F., & Fargason, S. (2012). A vertical pathway for teaching and learning the energy concept. Review of Science, Mathematics and ICT Education, 6(1), 51–72.Google Scholar
  21. Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 71(256), 33–40.Google Scholar
  22. Koliopoulos, D., & Tiberghien, A. (1986). Elements d'une bibliographie concernant l'enseignement de l'energie au niveau des colleges. Aster, Institut National de Recherche Pédagogique, 2, 167–178.Google Scholar
  23. Koliopoulos, D., & Ravanis, K. (1998). L’enseignement de l’energie au college vu par les enseignants. Grille d’analyse de leurs conceptions. Aster, Institut National de Recherche Pédagogique, 26, 165–182.Google Scholar
  24. Koliopoulos, D., & Ravanis, K. (2000a). Reflexions methodologiques sur la formation d’une culture concernant le concept d’energie a travers l’education formelle. Revue de Recherches en Éducation : SPIRALE, 26, 73–86.CrossRefGoogle Scholar
  25. Koliopoulos, D., & Ravanis, K. (2000b). Elaboration et evaluation du contenu conceptuel d'un programme constructiviste concernant l'approche energetique des phenomenes mecaniques. Didaskalia, 16, 33–56.Google Scholar
  26. Koliopoulos, D., & Ravanis, K. (2001). Didactic implications resulting from students’ ideas about energy: an approach to mechanical, thermal and electrical phenomena. Themes in Education, 2(2-3), 161–173.Google Scholar
  27. Koliopoulos, D., & Constantinou, C. (2005). The pendulum as presented in school science text-books of Greece and Cyprus. Science & Education, 14(1), 59–73.CrossRefGoogle Scholar
  28. Koliopoulos, D. (2006). Issues in Science Education. Athens: Metaixmio [In Greek].Google Scholar
  29. Koliopoulos, D., & Argyropoulou, M. (2011). Constructing qualitative energy concepts in a formal educational context with 6–7-year-old students. Review of Science, Mathematics and ICT Education, 5(1), 63–80.Google Scholar
  30. Koliopoulos, D., Aduriz-Bravo, A., & Ravanis, K. (2012). El ≪analisis del contenido conceptual≫ de los curriculos y programas de ciencias: una posible herramienta de mediacion entre la didactica y la ensenanza de las ciencias. Enseñanza de las Ciencias, 29(3), 315–324.Google Scholar
  31. Koliopoulos, D., & Constantinou, C. (2012). Energy in education. Review of Science, Mathematics and ICT Education, 6(1), 3–6.Google Scholar
  32. Koliopoulos, D. (2014). Is it possible to teach energy in preschool education? In F. Tasar (Ed.), Proceedings of the WCPE Conference (pp. 457–461). Ankara: Gazi Universitesi.Google Scholar
  33. Koulaidis, V., Dimopoulos, K., & Sklaveniti, S. (2002). Analyzing the texts of science and technology: school science textbooks and daily press articles in the public domain. In M. Kalantzis, G. Varnava-Skoura, & B. Cope (Eds.), Learning for the future (pp. 209–240). Sydney: Common Ground.Google Scholar
  34. Kuhn, T. (1977). Energy conservation as an example of simultaneous discovery. In T. Kuhn (Ed.), The essential tension (pp. 66–104). Chicago: The University of Chicago Press.Google Scholar
  35. Lacy, S., Tobin, R. G., Wiser, M., & Crissman, S. (2014). Looking through the energy lens: a proposed learning progression for energy in grades 3–5. In R. F. Chen, A. Eisenkraft, D. Fortus, J. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education (pp. 246–265). New York: Springer.Google Scholar
  36. Lemeignan, G., & Weil-Barais, A. (1994). A developmental approach to cognitive change in mechanics. International Journal of Science Education, 16(1), 99–120.CrossRefGoogle Scholar
  37. Lijnse, P. (1990). Energy between the life-world of pupils and the world of physics. Science Education, 74(5), 571–583.CrossRefGoogle Scholar
  38. Martinand, J.-L. (1986). Connaitre et transformer la matière. Berne: Peter Lang.Google Scholar
  39. Meheut, M., & Psillos, D. (2004). Teaching-leaning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515–535.CrossRefGoogle Scholar
  40. Meli, K., Koliopoulos, D., Lavidas, K., & Papalexiou, G. (2016). Upper secondary school students’ understanding of adiabatic compression. Review of Science, Mathematics and ICT Education, 10(2), 131–147.Google Scholar
  41. Millar, R. (1989). Constructivism criticisms. International Journal of Science Education, 11, 587–596.CrossRefGoogle Scholar
  42. Millar, R. (2005). Teaching about energy (Research Paper 2005/11). York: Department of Educational Studies, University of York.Google Scholar
  43. Papadouris, N., & Constantinou, C. P. (2011). A philosophically informed teaching proposal on the topic of energy for students aged 11–14. Science & Education, 20(10), 961–997. 635Google Scholar
  44. Piaget, J., & Garcia, R. (1971). Les explications causales. Paris: PUF.Google Scholar
  45. Piaget, J., & Garcia, R. (1983). Psychogenèse et histoire des sciences. Paris: Flammarion.Google Scholar
  46. Ravanis, K., Papamichael, Y., & Koulaidis, V. (2002). Social marking and conceptual change: the conception of light for ten-year old. Journal of Science Education, 3(1), 15–18. 639Google Scholar
  47. Rozier, S., & Viennot, L. (1991). Students’ reasoning in thermodynamics. International Journal of Science Education, 13(2), 159–170.CrossRefGoogle Scholar
  48. Ruthven, K., Laborde, C., Leach, J., & Tiberghien, A. (2009). Design tools in didactical research: instrumenting the epistemological and cognitive aspects of the design of teaching sequences. Educational Researcher, 38(5), 329–342.CrossRefGoogle Scholar
  49. Sissamberi, N. & Author 2, (2015).Google Scholar
  50. Solomon, J. (1985). Learning and evaluation: a study of school children’s views on the social uses of energy. Social Studies of Science, 15, 343–371.CrossRefGoogle Scholar
  51. Solomon, J. (1994). The rise and fall of constructivism. Studies in Science Education, 23(1), 1–19.CrossRefGoogle Scholar
  52. Tiberghien, A. (1996). Construction of prototypical situations in teaching the energy concept. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe. Current issues and themes (pp. 100–114). London: The Falmer Press.Google Scholar
  53. Tiberghien, A. (1997). Learning and teaching: differentiation and relation. Research in Science Education, 27(3), 359–382.CrossRefGoogle Scholar
  54. Tiberghien, A. (2000). Designing teaching situations in the secondary school. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: the contribution of research (pp. 27–47). Buckingham: Open University Press.Google Scholar
  55. Tiberghien, A., & Megalakaki, O. (1995). Characterization of a modelling activity for a first qualitative approach to the energy concept. European Journal of Psychology of Education, 10(4), 369–383.CrossRefGoogle Scholar
  56. Viglietta, V. (1990). A more ‘efficient’ approach to energy teaching. International Journal of Science Education, 12(5), 491–500.CrossRefGoogle Scholar
  57. Zemansky, M. W., & Dittman, R. H. (1987). Heat and thermodynamics. New York: McGraw-Hill.Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Greek Ministry of Education, Research and Religious AffairsPatrasGreece
  2. 2.PatrasGreece
  3. 3.Department of Educational Sciences and Early ChildhoodUniversity of PatrasPatrasGreece

Personalised recommendations