Skip to main content

Modeling the Transition from a Phenotypic to Genotypic Conceptualization of Genetics in a University-Level Introductory Biology Context

Abstract

Identifying contingencies between constructs in a multi-faceted learning progression (LP) is a challenging task. Often, there is not enough evidence in the literature to support connections, and once identified, they are difficult to empirically test. Here, we use causal model search to evaluate how connections between ideas in a genetics LP change over time in the context of an introductory biology course. We identify primary and secondary hub ideas and connections between concepts before and after instruction to illustrate how students moved from a phenotypic grounding of genetics knowledge to a more genotypic grounding of their genetics knowledge after instruction. We discuss our results in light of conceptual change and illustrate the importance of understanding students’ idea structures within a domain.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abraham, J. K., Perez, K. E., & Price, R. M. (2014). The dominance concept inventory: A tool for assessing undergraduate student alternative conceptions about dominance in Mendelian and population genetics. CBE-Life Sciences Education, 13(2), 349–358.

    Article  Google Scholar 

  • Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 84–86.

    Article  Google Scholar 

  • Banet, E., & Ayuso, E. (2000). Teaching genetics at secondary school: A strategy for teaching about the location of inheritance information. Science Education, 84(3), 313–351.

    Article  Google Scholar 

  • Bates, B. R., Lynch, J. A., Bevan, J. L., & Condit, C. M. (2005). Warranted concerns, warranted outlooks: A focus group study of public understandings of genetic research. Social Science & Medicine, 60(2), 331–344.

    Article  Google Scholar 

  • Bowling, B. V., Acra, E. E., Wang, L., Myers, M. F., Dean, G. E., Markle, G. C., et al. (2008a). Development and evaluation of a genetics literacy assessment instrument for undergraduates. Genetics, 178(1), 15–22.

    Article  Google Scholar 

  • Bowling, B. V., Huether, C. A., Wang, L., Myers, M. F., Markle, G. C., Dean, G. E., et al. (2008b). Genetic literacy of undergraduate non–science majors and the impact of introductory biology and genetics courses. Bioscience, 58(7), 654–660.

    Article  Google Scholar 

  • Briggs, D. C., Alonzo, A. C., Schwab, C., & Wilson, M. (2006). Diagnostic assessment with ordered multiple choice items. Educational Assessment, 11(1), 33–63.

  • Castro-Faix, M., Rothman, J., Seryapov, R., & Duncan, R. G. (2016). Data driven refinements of a genetics learning progression: Mapping an understanding of classical genetics. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Baltimore, MD.

  • Choi, J J., Duncan, R. G., Castro-Faix, M., & Cavera, V. L. (2016a). Validity evidence for assessments of a genetics learning progression. Paper presented at the Annual Meeting of the American Educational Research Association, Washington, DC.

  • Choi, J., Duncan, R G., Castro-Faix, M., Cavera V. (2016b). Using alternative instructional sequences to test a learning progression in genetics. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Baltimore, MD.

  • Christensen, K. D., Jayaratne, T. E., Roberts, J. S., Kardia, S. L. R., & Petty, E. M. (2010). Understandings of basic genetics in the United States: Results from a national survey of black and white men and women. Public Health Genomics, 13(7–8), 467–476.

    Article  Google Scholar 

  • Corcoran, T. B., Mosher, F. A., & Rogat, A. D. (2009). Learning progressions in science: An evidence-based approach to reform. New York, NY: Columbia University, Teachers College, Center on Continuous Instructional Improvement.

    Google Scholar 

  • Daack-Hirsch, S., Driessnack, M., Perkhounkova, Y., Furukawa, R., & Ramirez, A. (2012). A practical first step to integrating genetics into the curriculum. Journal of Nursing Education, 51(5), 294–298.

    Article  Google Scholar 

  • Dougherty, M. J. (2009). Closing the gap: Inverting the genetics curriculum to ensure an informed public. The American Journal of Human Genetics, 85(1), 6–12.

    Article  Google Scholar 

  • Duit, R. (2009). Bibliography–STCSE. Students’ and Teachers’ Conceptions and Science Education ( http://www.ipn.uni-kiel.de/aktuell/stcse/download_stcse.html ).

    Google Scholar 

  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.

    Article  Google Scholar 

  • Duncan, R. G., & Gotwals, A. W. (2015). A tale of two progressions: On the benefits of careful comparisons. Science Education, 99(3), 410–416.

    Article  Google Scholar 

  • Duncan, R. G., & Hmelo-Silver, C. E. (2009). Learning progressions: Aligning curriculum, instruction, and assessment. Journal of Research in Science Teaching, 46(6), 606–609.

    Article  Google Scholar 

  • Duncan, R. G., & Reiser, B. J. (2007). Reasoning across ontologically distinct levels: Students’ understandings of molecular genetics. Journal of Research in Science Teaching, 44(7), 938–959.

    Article  Google Scholar 

  • Duncan, R. G., Rogat, A. D., & Yarden, A. (2009). A learning progression for deepening students' understandings of modern genetics across the 5th–10th grades. Journal of Research in Science Teaching, 46(6), 655–674.

    Article  Google Scholar 

  • Duncan, R. G., Castro-Faix, M., & Choi, J. (2016). Informing a learning progression in genetics: Which should be taught first, Mendelian inheritance or the central dogma of molecular biology? International Journal of Science and Mathematics Education, 14(3), 445–472.

  • Elmesky, R. (2013). Building capacity in understanding foundational biology concepts: A K-12 learning progression in genetics informed by research on children’s thinking and learning. Research in Science Education, 43(3), 1155–1175.

    Article  Google Scholar 

  • Elrod, S. (2007). Genetics Concept Inventory. http://bioliteracy.colorado.edu/Readings/papersSubmittedPDF/Elrod.pdf (accessed 20 July 2013).

  • Fisher, K. M. (1985). A misconception in biology: Amino acids and translation. Journal of Research in Science Teaching, 22(1), 53–62.

    Article  Google Scholar 

  • Freidenreich, H. B., Duncan, R. G., & Shea, N. (2011). Exploring middle school students’ understanding of three conceptual models in genetics. International Journal of Science Education, 33(17), 2323–2349.

    Article  Google Scholar 

  • Gericke, N. M., & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understanding of genetics. Science & Education, 16(7–8), 849–881.

    Article  Google Scholar 

  • Glymour, C., Scheines, Spirtes, P. Ramsey, J. TETRAD [Computer software] (2016). Center for Causal Discovery. Retrieved from http://www.phil.cmu.edu/tetrad/current.html

  • Guttman, L. (1950). The principal components of scale analysis. In S. A. Stouffer, L. Guttman, E. A. Suchman, P. F. Lazarsfeld, S. A. Star, & J. A. Clausen (Eds.), Measurement and prediction (pp. 312–361). New York: Wiley.

    Google Scholar 

  • Hedeker, D., & Gibbons, R. D. (1997). Application of random-effects pattern-mixture models for missing data in longitudinal studies. Psychological Methods, 2(1), 64.

    Article  Google Scholar 

  • Human Genetics Commission [HGC]. (2001). Public attitudes to human genetic information: People’s Panel quantitative study conducted for the Human Genetics Commission.

  • Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., et al. (2003). A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302(5644), 449–453.

    Article  Google Scholar 

  • Kass, R. E., & Raftery, A. E. (1995). Bayes factor and model uncertainty. Journal of the American Statistical Association, 90(430), 773–795.

    Article  Google Scholar 

  • Klymkowsky, M. W., Underwood, S. M., & Garvin-Doxas, R. K. (2010). Biological Concepts Instrument (BCI): A diagnostic tool for revealing student thinking. arXiv preprint arXiv:1012.4501.

  • Knight, J. K., & Smith, M. K. (2010). Different but equal? How nonmajors and majors approach and learn genetics. CBE-Life Sciences Education, 9(1), 34–44.

    Article  Google Scholar 

  • Knippels, M. C. P., Waarlo, A. J., & Boersma, K. T. (2005). Design criteria for learning and teaching genetics. Journal of Biological Education, 39(3), 108–112.

    Article  Google Scholar 

  • Lanie, A. D., Jayaratne, T. E., Sheldon, J. P., Kardia, S. L., Anderson, E. S., Feldbaum, M., & Petty, E. M. (2004). Exploring the public understanding of basic genetic concepts. Journal of Genetic Counseling, 13(4), 305–320.

    Article  Google Scholar 

  • Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance-do students see any relationship? International Journal of Science Education, 22(2), 177–195.

    Article  Google Scholar 

  • Lewis, J., Leach, J., & Wood-Robinson, C. (2000). What's in a cell?—Young people's understanding of the genetic relationship between cells, within an individual. Journal of Biological Education, 34(3), 129–132.

    Article  Google Scholar 

  • Manthey, S., Brewe, E., Traxler, A. L., Kramer, L. H., O'Brien, G., von Wettberg, E., & Lowenstein, M. (2014). A Multi-Measure Assessment of Course Type Efficacy between Traditional Lecture and Online Instruction General Biology I at a Large Public Hispanic-Serving University. http://www.academia.edu/download/34548053/Manthey2014_SABER.pdf.

  • Marbach-Ad, G. (2001). Attempting to break the code in student comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.

    Article  Google Scholar 

  • Miller, J. D., Scott, E. C., & Okamoto, S. (2006). Public acceptance of evolution. Science, 313(5788), 765–766.

    Article  Google Scholar 

  • Molster, C., Charles, T., Samanek, A., & O’Leary, P. (2008). Australian study on public knowledge of human genetics and health. Public Health Genomics, 12(2), 84–91.

    Article  Google Scholar 

  • National Research Council [NRC]. (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

    Google Scholar 

  • Newman, D. L., Snyder, C. W., Fisk, J. N., & Wright, L. K. (2016). Development of the central dogma concept inventory (CDCI) assessment tool. CBE-Life Sciences Education, 15(2), ar9.

    Article  Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press.

  • Petty, E. M., Kardia, S. R., Mahalingham, R., Pfeffer, C. A., Saksewski, S. L., Brandt, M. G., … & Jayaratne, T. E. (2000a, October). Public understanding of genes and genetics: Implications for the utilization of genetic services and technology. In American Journal of Human Genetics (Vol. 67, No. 4, pp. 253–253). 5720 SOUTH WOODLAWN AVE, CHICAGO, IL 60637–1603 USA: UNIV CHICAGO PRESS.

  • Petty, E. M., Kardia, S. R., Mahalingham, R., Pfeffer, C. A., Saksewski, S. L., Brandt, M. G., Anderson, E. S., & Jayaratne, T. E. (2000b). Public understanding of genes and genetics: Implications for the utilization of genetic services and technology. American Journal of Human Genetics, 4, 253.

    Google Scholar 

  • Popper, K. (1957). In C. A. Mace (Ed.), Philosophy of science. British philosophy in the mid-century. London: George Allen and Unwin.

    Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227.

    Article  Google Scholar 

  • Raftery, A. E. (1995). Bayesian model selection in social research. Sociological Methodology, 111–163.

  • Raftery, A. E. (1996). Approximate Bayes factors and accounting for model uncertainty in generalised linear models. Biometrika, 83(2), 251–266.

    Article  Google Scholar 

  • Ramsey, J. D. (2015). Scaling up Greedy Equivalence Search for Continuous Variables. arXiv preprint arXiv:1507.07749.

  • Ramsey, J. D., Hanson, S. J., Hanson, C., Halchenko, Y. O., Poldrack, R. A., & Glymour, C. (2010). Six problems for causal inference from fMRI.neuroimage, 49(2), 1545–1558.

  • Rogat, A., Anderson, C. A., Foster, J., Goldberg, F., Hicks, J., Kanter, D., … Wiser, M. (2011). Developing learning progressions in support of new science standards. A RAPID workshop series. Consortium for Policy Research in Education. Retrieved from http://eric.ed.gov/?id=ED536834.

  • Romine, W. L., Schaffer, D. L., & Barrow, L. (2015). Development and application of a novel Rasch-based methodology for evaluating multi-tiered assessment instruments: Validation and utilization of an undergraduate diagnostic test of the water cycle. International Journal of Science Education, 37(16), 2740–2768.

  • Roseman, J. E., Caldwell, A., Gogos, A., & Kurth, L. (2006). Mapping a coherent learning progression for the molecular basis of heredity. Paper presented at the annual meeting of the National Association for research in science teaching. San Francisco: CA.

  • Sanchez, C., Lachaize, C., Janody, F., Bellon, B., Röder, L., Euzenat, J., et al. (1999). Grasping at molecular interactions and genetic networks in Drosophila melanogaster using FlyNets, an internet database. Nucleic Acids Research, 27(1), 89–94.

    Article  Google Scholar 

  • Schönborn, K. J., & Anderson, T. R. (2006). The importance of visual literacy in the education of biochemists. Biochemistry and Molecular Biology Education, 34(2), 94–10.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461–464.

    Article  Google Scholar 

  • Shea, N. A. (2015). Examining the nexus of science communication and science education: A content analysis of genetics news articles. Journal of Research in Science Teaching, 52(3), 397–409.

    Article  Google Scholar 

  • Shea, N. A., & Duncan, R. G. (2013). From theory to data: The process of refining learning progressions. Journal of the Learning Sciences, 22(1), 7–32.

    Article  Google Scholar 

  • Shea, N. A., Duncan, R. G., & Stephenson, C. (2015). A tri-part model for genetics literacy: Exploring undergraduate student reasoning about authentic genetics dilemmas. Research in Science Education, 45(4), 485–507.

    Article  Google Scholar 

  • Shi, J., Wood, W. B., Martin, J. M., Guild, N. A., Vicens, Q., & Knight, J. K. (2010). A diagnostic assessment for introductory molecular and cell biology. CBE-Life Sciences Education, 9(4), 453–461.

    Article  Google Scholar 

  • Smith, M. K., & Knight, J. K. (2012). Using the genetics concept assessment to document persistent conceptual difficulties in undergraduate genetics courses. Genetics, 191(1), 21–32.

    Article  Google Scholar 

  • Smith, M. K., Wood, W. B., & Knight, J. K. (2008). The genetics concept assessment: A new concept inventory for gauging student understanding of genetics. CBE-life sciences Education, 7(4), 422–430.

    Article  Google Scholar 

  • Songer, N. B., Kelcey, B., & Gotwals, A. W. (2009). How and when does complex reasoning occur? Empirically driven development of a learning progression focused on complex reasoning about biodiversity. Journal of Resarch in Science Teaching, 46(6), 610–631.

  • Stekhoven, D. J., Moraes, I., Sveinbjörnsson, G., Hennig, L., Maathuis, M. H., & Bühlmann, P. (2012). Causal stability ranking. Bioinformatics, 28(21), 2819–2823.

    Article  Google Scholar 

  • Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687–715.

    Article  Google Scholar 

  • Stewart, J., Cartier, J. L., & Passmore, C. M. (2005). Developing understanding through model-based inquiry. In M. S. Donovan & J. D. Branford (Eds.), How students learn (pp. 515-565). Washington DC: National Research Council.

  • Tibell, L. A., & Rundgren, C. J. (2010). Educational challenges of molecular life science: Characteristics and implications for education and research. CBE-Life Sciences Education, 9(1), 25–33.

    Article  Google Scholar 

  • Todd, A. N. (2013). The molecular genetics learning progressions: Revisions and refinements based on empirical testing in three 10th grade classrooms. Doctoral dissertation, Wright State University, Dayton, OH.

  • Todd, A. & Kenyon, L. (2016). Empirical refinements of a molecular genetics learning progression: The molecular constructs. Journal of Research in Science Teaching, 53(9), 1385-1418.

  • Todd, A. & Romine W. (2016). Validation of the Learning Progression-based Assessment of Modern Genetics (LPA-MG) in a college context. International Journal of Science Education, 38(10), 1673–1698.

  • Todd, A., & Romine, W. (2017). Empirical validation of a modern genetics progression web for college biology students. International Journal of Science Education. doi:10.1080/09500693.2017.1296207.

  • Todd, A., Romine, W., & Cook Whitt, K. (2017). Development and validation of the Learning Progression-based Assessment of Modern Genetics (LPA-MG) in a high school context. Science Education, 101(1), 32–65.

  • Venville, G., Gribble, S. J., & Donovan, J. (2005). An exploration of young children's understandings of genetics concepts from ontological and epistemological perspectives. Science Education, 89(4), 614–633.

    Article  Google Scholar 

  • Wilson, M. (2009). Measuring progressions: Assessment structures underlying a learning progression. Journal of Research in Science Teaching, 46(6), 716–730.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank the Center for Causal Discovery, supported by grant U54HG008540, for providing open access to its software TETRAD and for methodological assistance. We would like to thank Gretchen Haas for valuable feedback on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amber Todd.

Additional information

Due to Romine’s effort with the revisions, we would like to propose a new authorship order: Todd, Romine, and Correa-Menendez, with a clause that Todd and Romine contributed equally to the work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Todd, A., Romine, W.L. & Correa-Menendez, J. Modeling the Transition from a Phenotypic to Genotypic Conceptualization of Genetics in a University-Level Introductory Biology Context. Res Sci Educ 49, 569–589 (2019). https://doi.org/10.1007/s11165-017-9626-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-017-9626-2

Keywords

  • Genetics
  • Learning progressions
  • Causal model search
  • Bayesian networks