Factors Influencing Postsecondary STEM Students’ Views of the Public Communication of an Emergent Technology: a Cross-National Study from Five Universities

Abstract

Recent efforts in the science education community have highlighted the need to integrate research and theory from science communication research into more general science education scholarship. These synthesized research perspectives are relatively novel but serve an important need to better understand the impacts that the advent of rapidly emerging technologies will have on a new generation of scientists and engineers including their formal communication with engaged citizenry. This cross-national study examined postsecondary science and engineering students’ (n = 254 from five countries: Austria, Finland, France, Israel, and USA) perspectives on the role of science communication in their own formal science and engineering education. More broadly, we examined participants’ understanding of their perceived responsibilities of communicating science and engineering to the general public when an issue contains complex social and ethical implications (SEI). The study is contextualized in the emergent technology of nanotechnology for which SEI are of particular concern and for which the general public often perceives conflicting risks and benefits. Findings indicate that student participants’ hold similar views on the need for their own training in communication as future scientists and engineers. When asked about the role that ethics and risk perception plays in research, development, and public communication of nanotechnology, participants demonstrate similar trajectories of perspectives that are, however, often anchored in very different levels of beginning concern. Results are discussed in the context of considerations for science communication training within formal science education curricula globally.

This is a preview of subscription content, access via your institution.

References

  1. Allum, N., Sturgis, P., Tabourazi, D., & Brunton-Smith, I. (2008). Science knowledge and attitudes across cultures: a meta-analysis. Public Understanding of Science, 17, 35–54. doi:10.1177/0963662506070159.

    Article  Google Scholar 

  2. Bainbridge, W. S. (2002). Public attitudes toward nanotechnology. Journal of Nanoparticle Research, 4, 561–570. doi:10.1023/A:1022805516652.

    Article  Google Scholar 

  3. Baram-Tsabari, A., & Lewenstein, B. V. (2013). An instrument for assessing scientists’ skills in public communication of science. Science Communication, 35(1), 56–85. doi:10.1177/1075547012440634.

    Article  Google Scholar 

  4. Baram-Tsabari, A., & Osborne, J. (2015). Bridging science education and science communication research. Journal of Research in Science Teaching, 52(2), 135–144.

    Article  Google Scholar 

  5. Berne, R., & Schummer, J. (2005). Teaching social and ethical implications of nanotechnology to engineering students through science fiction. Bulletin of Science, Technology, and Society, 25(6), 459–468. doi:10.1177/0270467605283048.

    Article  Google Scholar 

  6. Berube, D. M., Faber, B., Schuefele, D. A., Cummings, C., Gardner, G. E., Martin, K., et al. (2009). Communicating risk in the 21st century: the case of nanotechnology. White paper sponsored by the National Nanotechnology Coordination Office (NNCO). http://www.nano.gov/node/626. Accessed 21 Nov 2015.

  7. Besley, J. C., & Tanner, A. H. (2011). What science communication scholars think about training scientists to communicate. Science Communication, 33(2), 239–263. doi:10.1177/1075547010386972.

    Article  Google Scholar 

  8. Besley, J. C., Kramer, V. L., & Priest, S. H. (2008). Expert opinion on nanotechnology: risks, benefits, and regulation. Journal of Nanoparticle Research, 10, 549–558. doi:10.1007/s11051-007-9323-6.

    Article  Google Scholar 

  9. Besley, J. C., Dudo, A., & Storksdieck, M. (2015). Scientists’ views about communication training. Journal of Research in Science Teaching, 52(2), 199–220.

    Article  Google Scholar 

  10. Brownsword, R. (2009). Nanoethics: old wine, new bottles? Journal of Consumer Policy, 32(4), 355–379. doi:10.1007/s10603-009-9100-2.

    Article  Google Scholar 

  11. Cacciatore, M. A., Scheufele, D. A., & Corley, E. A. (2011). From enabling technology to applications: the evolution of risk perceptions about nanotechnology. Public Understanding of Science, 20(3), 385–404. doi:10.1080/21548455.2013.793433.

    Article  Google Scholar 

  12. Edmonston, J. E., & Dawson, V. (2013). Perspectives of science communication training held by lecturers of biotechnology and science communication. International Journal of Science Education, Part B, 4(2), 195–210.

  13. Edmonston, J. E., Dawson, V., & Schibeci, R. (2010a). Postsecondary biotechnology students’ views of science communication. International Journal of Science Communication, 32(18), 2451–2474. doi:10.1080/09500690903514598.

    Google Scholar 

  14. Edmonston, J. E., Dawson, V., & Schibeci, R. (2010b). Are students prepared to communicate? A case study of an Australian degree course in biotechnology. International Journal of Mathematics and Science Education, 8(6), 1091–1108. doi:10.1007/s10763-010-9234-3.

    Article  Google Scholar 

  15. Ekli, E., & Sahin, N. (2010). Science teachers and teacher candidates’ basic knowledge, opinions and risk perceptions about nanotechnology. Procedia Social and Behavioral Sciences, 2, 2667–2670. doi:10.1016/j.sbspro.2010.03.392.

    Article  Google Scholar 

  16. Englander, O., & Kim, A. (2011). Nanocore at the FAMUFSU College of Engineering: program overview and unique assessment approach. Journal of Nano Education, 3, 1–12.

  17. Feinstein, N. (2015). Education, communication, and science in the public sphere. Journal of Research in Science Teaching, 52(2), 145–163.

    Article  Google Scholar 

  18. Finnish Society for Scientific Information (FSSI). (2013). Summary of the Finnish Science Barometer. Retrieved from http://www.tieteentiedotus.fi/files/Sciencebarometer_2013_netsummary.pdf.

  19. Fischhoff, B., Slovic, P., Lichtenstein, S., Read, S., & Combs, B. (1978). How safe is safe enough? A psychometric study of attitudes towards technological risks and benefits. Policy Sciences, 9, 127–152.

    Article  Google Scholar 

  20. Gardner, G. E., & Jones, M. G. (2014). Exploring pre-service teachers’ perceptions of the risks of emergent technologies: implications for teaching and learning. Journal of Nano Education, 6(1), 39–49. doi:10.1166/jne.2013.1041.

  21. Gardner, G. E., Jones, M. G., Taylor, A., Forrester, J. H. & Robertson, L. (2010). Students’ risk perceptions of nanotechnology applications: implications for science education. International Journal of Science Education, 32(14), 1951–1969. doi:10.1080/09500690903331035.

  22. Gaskelll, G., Eyck, T. T., Jackson, J., & Veltri, G. (2004). Public attitudes to nanotech in Europe and the United States. Nature Materials, 3, 496. doi:10.1038/nmat1181.

    Article  Google Scholar 

  23. Grunwald, A. (2005). Nanotechnology a new field of ethical inquiry? Science and Engineering Ethics, 11, 187–201. doi:10.1007/s11948-005-0041-0.

    Article  Google Scholar 

  24. Guston, D., & Sarewitz, D. (2002). Real-time technology assessment. Technology in Society, 24, 93–109. doi:10.1016/S0160-791X(01)00047-1.

    Article  Google Scholar 

  25. Hisschemöller, M., & Midden, C. J. H. (1999). Improving the usability of research on the public perception of science and technology for policy-making. Public Understanding of Science, 8, 17–33. doi:10.1088/0963-6625/8/1/002.

    Article  Google Scholar 

  26. Hoover, E., Brown, P., Averick, M., Kane, A., & Hurt, R. (2009). Teaching small and thinking large: effects of including social and ethical implications in an interdisciplinary nanotechnology course. Journal of Nano Education, 1(1), 86–95. doi:10.1166/jne.2009.013.

    Article  Google Scholar 

  27. Johnston, S., McGregor, H., & Taylor, E. (2010). Practice-focused ethics in Australian engineering. European Journal of Engineering Education, 25(4), 315–324. doi:10.1080/03043790050200359.

    Article  Google Scholar 

  28. Jones, M. G., Gardner, G. E., Falvo, M. R., & Taylor, A. R. (2015). Precollege nanotechnology education: a different kind of thinking. Nanotechnology Reviews, 4(1), 117–127. doi:10.1515/ntrev-2014-0014.

  29. Kim, H.-J., & Hong, H.-G. (2010). Science teachers’ perceptions and attitudes toward nanotechnology. Journal of the Korean Chemical Society, 54(5), 633–642.

    Article  Google Scholar 

  30. Kjolberg, K., & Wickson, F. (2007). Social and ethical interactions with nano: mapping the early literature. NanoEthics, 1, 89–104. doi:10.1007/s11569-007-0011-x.

    Article  Google Scholar 

  31. Lin, S.-F., Lin, H.-S., & Wu, Y.-Y. (2013). Validation and exploration of instruments for assessing public knowledge and attitudes toward nanotechnology. Journal of Science Education and Technology, 22(4), 548–559. doi:10.1007/s10956-012-9413-9.

    Article  Google Scholar 

  32. Macoubrie, J. (2006). Nanotechnology: public concerns, reasoning and trust in government. Public Understanding of Science, 15, 221–241. doi:10.1177/0963662506056993.

    Article  Google Scholar 

  33. McGinn, R. (2008). Ethics and nanotechnology: views of nanotechnology researchers. NanoEthics, 2, 101–131. doi:10.1007/s11569-008-0040-0.

    Article  Google Scholar 

  34. Miller, J. D. (2004). Public understanding of, and attitudes toward, scientific research: what we know and what we need to know. Public Understanding of Science, 13, 273–294. doi:10.1177/0963662504044908.

    Article  Google Scholar 

  35. Moor, J., & Weckert, J. (2004). Nanoethics: assessing the nanoethics from an ethical point of view. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 301–309). Amsterdam: IOS.

  36. Mulder, H., Longnecker, N., & Davis, L. (2008). The state of science communication programs at universities around the world. Science Communication, 30(2), 277–287. doi:10.1177/1075547008324878.

    Article  Google Scholar 

  37. National Science Foundation/Department of Commerce (NSF/DOC). (2002). Converging technologies for improving human performance: nanotechnology, biotechnology, information technology and cognitive science. Arlington, VA: National Science Foundation.

    Google Scholar 

  38. Nerlich, B., Clarke, D. D., & Ulph, F. (2007). Risks and benefits of nanotechnology: how young adults perceive possible advances in nanomedicine compared with conventional treatments. Health, Risk and Society, 9(2), 159–171. doi:10.1080/13698570701306856.

    Article  Google Scholar 

  39. Next Generation Science Standards Lead States. (2013). Next generation science standards: for states, by states. Washington, DC. The National Academies Press.

  40. Padilla, M. J. (1990). Science process skills. National Association of Research in Science Teaching Publication: Research Matters – To the Science Teacher (9004). http://www.narst.org/publications/research/skill.cfm.Accessed 21 Nov 2015.

  41. President’s Council of Advisors on Science and Technology (PCAST). (2012). Engage to excel: producing one million additional college graduates with degrees in science, technology, engineering, and mathematics. Retrieved from http://files.eric.ed.gov/fulltext/ED541511.pdf

  42. Priest, S. (2006). The North American opinion climate for nanotechnology and its products: opportunities and challenges. Journal of Nanoparticle Research, 8, 563–568. doi:10.1007/s11051-005-9060-7.

    Article  Google Scholar 

  43. Resnick, D. B. (2011). Scientific research and the public trust. Science and Engineering Ethics, 17(3), 399–409. doi:10.1007/s11948-010-9210-x.

    Article  Google Scholar 

  44. Robinson, W. L. (2004). Nano-ethics. In D. Baird, A. Nordmann, & J. Schummer (Eds.), Discovering the nanoscale (pp. 285–299). Amsterdam: IOS.

  45. Sandler, R. (2009). Nanotechnology: the social and ethical issues. (Report No. 16). Retrieved from Woodrow Wilson International Center for Scholars, Project on Emerging Nanotechnologies on Jan 15, 2012 from www.nanotechproject.org/process/assets/files/7060/nano_pen16_final.pdf

  46. Savadori, L., Savio, S., Nicotra, E., Rumiati, R., Finucane, M., & Slovic, P. (2004). Expert and public perception of risk from biotechnology. Risk Analysis, 24, 1298–1299. doi:10.1111/j.0272-4332.2004.00526.x.

    Article  Google Scholar 

  47. Scheufele, D. A., Corley, E. A., Shih, T.-J., Dalrymple, K. E., & Ho, S. S. (2009). Religious beliefs and public attitudes toward nanotechnology in Europe and the United States. Nature Nanotechnology, 4, 91–94.

    Article  Google Scholar 

  48. Siegrist, M. (2010). Predicting the future: review of public perceptions studies of nanotechnology. Human and Ecological Risk Assessment, 16(4), 837–846.

    Article  Google Scholar 

  49. Siegrist, M., Keller, C., Kastenholz, H., Frey, S., & Wiek, A. (2007). Laypeople’s and experts’ perception of nanotechnology hazards. Risk Analysis, 27(1), 59–69.

    Article  Google Scholar 

  50. Simonneaux, L., Panissal, N., & Brossais, E. (2013). Students’ perceptions of risk about nanotechnology after an SAQ teaching strategy. International Journal of Science Education, 35(14), 2376–2406. doi:10.1080/09500693.2011.635164.

    Article  Google Scholar 

  51. Sjöberg, L. (2002). Attitudes toward technology and risk: going beyond what is immediately given. Policy Sciences, 35, 379–400. doi:10.1023/A:1021354900928.

    Article  Google Scholar 

  52. Slovic, P. (1987). Perception of risk. Science, 236, 280–285. doi:10.1126/science.3563507.

    Article  Google Scholar 

  53. Toth, E. E., Jackson, K. J., & Witherspoon, B. (2011a). Preparing future scientists and engineers to assess the ethical implications of their work in nano-biotechnology: global sustainability by way of a socially aware STEM workforce. Paper presented at the National Association for Research on Science Teaching Orlando, FL.

  54. Toth, E. E., Graham, M. S., Trythall, J., & Witherspoon, B. (2011b). Nano-biotechnology literacy for sustainability in an international context. Preparing the public by educating teachers. Paper presented at the National Association for Research on Science Teaching. Annual International Conference, Orlando, FL

    Google Scholar 

  55. Trench, B., & Miller, S. (2012). Policies and practices in supporting scientists’ public communication through training. Science and Public Policy, 39, 722–731. doi:10.1093/scipol/scs090.

    Article  Google Scholar 

  56. Webb, A. B., Fetsch, C. R., Israel, E. I., Roman, C. M., Encarnacion, C. H., Zacks, J. M., Thoroughman, K. A., & Herzog, E. D. (2012). Training scientists in a science center improves science communication to the public. Advances in Physiology Education, 36, 72–76. doi:10.1152/advan.00088.2010.

    Article  Google Scholar 

  57. Whittington, C. P., Pellock, S. J., Cunningham, R. L., & Cox, J. R. (2014). Combining content and elements of communication into an upper-level biochemistry course. Biochemistry and Molecular Biology Education, 42(2), 136–141. doi:10.1002/bmb.20770.

  58. Yeoman, K.H., James, H.A., & Bowater, L. (2011). Development and evaluation of an postsecondary science communication module. Bioscience Education, 17(7).

  59. Zeidler, D. L. (2016). STEM education: a deficit framework for the twenty first century? A sociocultural socioscientific response. Cultural Studies in Science Education, 11(1), 11–26.

  60. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: a research based framework for socioscientific issues education. Science Education, 89, 357–377. doi:10.1002/sce.20048.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Grant E. Gardner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gardner, G.E., Jones, M.G., Albe, V. et al. Factors Influencing Postsecondary STEM Students’ Views of the Public Communication of an Emergent Technology: a Cross-National Study from Five Universities. Res Sci Educ 47, 1011–1029 (2017). https://doi.org/10.1007/s11165-016-9537-7

Download citation

Keywords

  • Science communication
  • Cross-national study
  • Postsecondary
  • Emergent technology
  • Nanotechnology