Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

When Do Pictures Help Learning from Expository Text? Multimedia and Modality Effects in Primary Schools

Abstract

Adding pictures to a text is very common in today’s education and might be especially beneficial for elementary school children, whose abilities to read and understand pure text have not yet been fully developed. Our study examined whether adding pictures supports learning of a biology text in fourth grade and whether the text modality (spoken or written) plays a role. Results indicate that overall, pictures enhanced learning but that the text should be spoken rather than written. These results are in line with instructional design principles derived from common multimedia learning theories. In addition, for elementary school children, it might be advisable to read texts out to the children. Reading by themselves and looking at pictures might overload children’s cognitive capacities and especially their visual channel. In this case, text and pictures would not be integrated into one coherent mental model, and effective learning would not take place.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ainsworth, S. (2010). Improving learning by drawing. Paper presented at the 9th International Conference of the Learning Sciences (ICLS). Chicago, USA.

  2. Ainsworth, S. E., & Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681.

  3. Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097.

  4. Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman.

  5. Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40, 199–209.

  6. Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students’ learning with hypermedia? Journal of Educational Psychology, 96(3), 523–535.

  7. Baddeley, A. D. (1999). Human memory. Boston: Allyn & Bacon.

  8. Bobis, J., Sweller, J., & Cooper, M. (1993). Cognitive load effects in a primary-school geometry task. Learning and Instruction, 3, 1–21.

  9. Brookshire, J., Scharff, L. F. V., & Moses, L. E. (2002). The influence of illustrations on children’s book preferences and comprehension. Reading Psychology, 23, 323–339.

  10. Brünken, R., & Leutner, D. (2001). Aufmerksamkeitsverteilung oder Aufmerksamkeits-fokussierung? Empirische Ergebnisse zur „Split-Attention-Hypothese“beim Lernen mit Multimedia [Splitting or focussing attention. Empirical results for a “split-attention hypothesis” of multimedia learning]. Unterrichtswissenschaft, 29, 357–366.

  11. Brünken, R., Plass, J. L., & Leutner, D. (2004). Assessment of cognitive load in multimedia learning with dual-task methodology: auditory load and modality effects. Instructional Science, 32, 115–132.

  12. Bryant, J., Brown, D., Silberberg, A. R., & Elliot, S. M. (1981). Effects of humorous illustrations in college textbooks. Human Communication Research, 8, 43–57.

  13. Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14, 5–26.

  14. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332.

  15. Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62, 233–246.

  16. Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.

  17. Chi, M. T. H., Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.

  18. Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Elsevier.

  19. Cook, M. (2006). Visual representations in science education: the influence of prior knowledge and cognitive load on instructional design principles. Science Education, 90(6), 1079–1091.

  20. De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2007). Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology, 21(6), 731–746.

  21. De Westelinck, K., Valcke, M., De Craene, B., & Kirschner, P. (2005). The cognitive theory of multimedia learning in the social sciences knowledge domain: limitations of external graphical representations. Computers in Human Behavior, 21, 555–573.

  22. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.

  23. Feger, B. (1984). Die Generierung von Testitems zu Lehrtexten [The generation of test items for educational texts]. Diagnostica, 30, 24–46.

  24. Fletcher, J. D., & Tobias, S. (2005). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 117–133). Cambridge: Cambridge University.

  25. Freisinger, S. D. (1976). The effect of cartoon-embellished programmed textual instruction on students’ learning and affective learning. Paper presented at the annual meeting of the Association for Educational Communications and Technology, Anaheim, California. (ERIC Document Reproduction Service No. ED 128 008).

  26. Gilbert, J. K. (2008). Visualization: an emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: theory and practice in science education (pp. 3–24). Dordrecht, The Netherlands: Springer.

  27. Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.

  28. Goldstein, R., & Underwood, G. (1981). The influence of pictures on the derivation of meaning from children’s reading materials. Journal of Research in Reading, 4, 6–16.

  29. Green, J. G., Moos, D. C., Azevedo, R. A., & Winters, F. I. (2008). Exploring differences between gifted and grade-level students’ use of self-regulatory learning processes with hypermedia. Computers in Education, 50, 1069–1083.

  30. Harskamp, E. G., Mayer, R. E., & Suhre, C. (2007). Does the modality principle for multimedia learning apply to science classrooms? Learning and Instruction, 17, 465–477.

  31. Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen Revision (KFT 4-12 + R) [Cognitive abilities test for grades 4 to 12, revised version]. Göttingen: Hogrefe.

  32. Höffler, T., Schmeck, A., & Opfermann, M. (2013). Static and dynamic visual representations: individual differences in processing. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays: current perspectives on cognition, learning, and instruction (pp. 133–163). Charlotte: Information Age.

  33. Jaccard, J. (2006). Zumastat 4.0. [Computer software]. Miami: Applied Scientific Analysis.

  34. Keller, R. W. (2005). Real science-4-kids. Biology level I. Rio Rancho: Gravitas.

  35. Keller, R. W. (2011). Real science-4-kids. Chemistry level I. Rio Rancho, NM: Gravitas.

  36. Klauer, K. J. (1985). Framework for a theory of teaching. Teaching and Teacher Education, 1(1), 5–17.

  37. Klauer, K. J. (1987). Kriteriumorientierte Tests. Lehrbuch der Theorie und Praxis lehrzielorientierten Messens. [Criterion-referenced tests. Textbook for theory and praxis of educational objectives’ measurement]. Göttingen: Hogrefe.

  38. Kozma, R. (2003). Innovative practices from around the world: integrating technology into the classroom. Leading and Learning, 21, 52–54.

  39. Lenhard, W., & Schneider, W. (2006). ELFE 1–6: Ein Leseverständnistest für Erst- bis Sechstklässler [ELFE 1–6: a reading comprehension test for grade 1 to 6]. Göttingen: Hogrefe.

  40. Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: effects of drawing and imagining text content. Computers in Human Behavior, 25, 284–289.

  41. Levie, W. H., & Lentz, R. (1982). Effects of text illustrations—a review of research. Educational Communication and Technology Journal, 30, 195–232.

  42. Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. Basic research (pp. 51–85). New York: Springer.

  43. Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650–658.

  44. Lipsey, M. W. (1990). Design sensitivity. Statistical power for experimental design. Newbury Park: Sage.

  45. Mayer, R. E. (Ed.). (2005). The Cambridge handbook of multimedia learning. Cambridge: Cambridge University.

  46. Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge: Cambridge University.

  47. Mayer, R. (2010). Unique contribution of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20, 167–171.

  48. Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (2nd ed., pp. 279–315). New York: Cambridge University.

  49. Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: evidence for dual processing systems in working memory. Journal of Educational Psychology, 90, 312–320.

  50. Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, 319–334.

  51. Paivio, A. (1986). Mental representation: a dual coding approach. New York: Oxford University.

  52. Peeck, J. (1974). Retention of pictorial and verbal content of a text with illustrations. Journal of Educational Psychology, 66, 880–888.

  53. Peeck, J. (1987). The role of illustrations in processing and remembering illustrated text. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. Basic research (pp. 115–151). New York: Springer.

  54. Peeck, J. (1994). Wissenserwerb mit darstellenden Bildern. [Knowledge acquisition with representational illustrations]. In B. Weidenmann (Ed.), Wissenserwerb mit Bildern. Instruktionale Bilder in Printmedien, Film/Video und Computerprogrammen (pp. 59–94). Bern: Huber.

  55. Pelaez, N. J., Boyd, D. D., Rojas, J. B., & Hoover, M. A. (2005). Prevalence of blood circulation misconceptions among prospective elementary teachers. Advances in Physiology Education, 29, 172–181.

  56. Rey, G. D. (2012). How seductive are decorative elements in learning material? Journal of Educational Multimedia and Hypermedia, 21, 257–283.

  57. Schmeck, A., Mayer, R., Opfermann, M., Pfeiffer, V., & Leutner, D. (2014). Drawing pictures during learning from scientific text: testing the generative drawing effect and the prognostic drawing effect. Contemporary Educational Psychology, 39, 275–286.

  58. Schmeck, A., Opfermann, M., Van Gog, T., Paas, F., & Leutner, D. (2015). Measuring cognitive load with subjective rating scales during problem solving: differences between immediate and delayed ratings. Instructional Science, 43(1), 93–114.

  59. Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100–110.

  60. Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14, 101–120.

  61. Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49–69). Cambridge: Cambridge University.

  62. Schnotz, W., Bannert, M., & Seufert, T. (2002). Towards an integrative view of text and picture comprehension: visualization effects on the construction of mental models. In J. Otero, A. Graesser, & J. A. Leon (Eds.), The psychology of science text comprehension (pp. 385–416). Mahwah: Erlbaum.

  63. Segers, E., Verhoeven, L., & Hulstijn-Hendrikse, N. (2008). Cognitive processes in children’s multimedia text learning. Applied Cognitive Psychology, 22, 375–387.

  64. Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). Cambridge: Cambridge University.

  65. Sweller, J., Chandler, P., Tierney, P., & Cooper, M. (1990). Cognitive load and selective attention as factors in the structuring of technical material. Journal of Experimental Psychology: General, 119, 176–192.

  66. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

  67. Sweller, J., van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.

  68. Tabbers, H. K., Martens, R. L., & van Merriënboer, J. J. G. (2004). Multimedia instructions and cognitive load theory: effects of modality and cueing. British Journal of Educational Psychology, 74, 71–81.

  69. Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3, 257–287.

  70. Treagust, D. F., & Tsui, D. (2013). Multiple representations in biological education. Dordrecht, The Netherlands: Springer.

  71. Van Meter, P., & Firetto, C. M. (2013). Cognitive model of drawing construction: learning through the construction of drawings. In G. J. Schraw, M. T. McCrudden, & D. R. Robinson (Eds.), Learning through visual displays (pp. 247–380). Charlotte: Information Age.

  72. Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17, 285–325.

  73. Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31, 142–166.

  74. Vavra, K. L., Janjic-Watrich, V., Loerke, K., Phillips, L. M., Norris, S. P., & Macnab, J. (2011). Visualization in science education. Alberta Science Education Journal, 41, 22–30.

  75. Weidenmann, B. (1993). Informierende Bilder. [Informational pictures.]. In B. Weidenmann (Ed.), Wissenserwerb mit Bildern [Knowledge acquisition with pictures.] (pp. 9–58). Bern: Hans Huber.

  76. Yeung, A. S., Jin, P., & Sweller, J. (1997). Cognitive load and learner expertise: split-attention and redundancy effects in reading with explanatory notes. Contemporary Educational Psychology, 23, 1–21.

Download references

Acknowledgments

This paper was part of a project funded by the German Research foundation (DFG), grant no. LE 645/9-3.

Author information

Correspondence to Tim N. Höffler.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Herrlinger, S., Höffler, T.N., Opfermann, M. et al. When Do Pictures Help Learning from Expository Text? Multimedia and Modality Effects in Primary Schools. Res Sci Educ 47, 685–704 (2017). https://doi.org/10.1007/s11165-016-9525-y

Download citation

Keywords

  • Multimedia learning
  • Multimedia effect
  • Modality effect
  • Elementary school children
  • Split attention