Advertisement

Research in Science Education

, Volume 47, Issue 3, pp 685–704 | Cite as

When Do Pictures Help Learning from Expository Text? Multimedia and Modality Effects in Primary Schools

  • Simone Herrlinger
  • Tim N. Höffler
  • Maria Opfermann
  • Detlev Leutner
Article

Abstract

Adding pictures to a text is very common in today’s education and might be especially beneficial for elementary school children, whose abilities to read and understand pure text have not yet been fully developed. Our study examined whether adding pictures supports learning of a biology text in fourth grade and whether the text modality (spoken or written) plays a role. Results indicate that overall, pictures enhanced learning but that the text should be spoken rather than written. These results are in line with instructional design principles derived from common multimedia learning theories. In addition, for elementary school children, it might be advisable to read texts out to the children. Reading by themselves and looking at pictures might overload children’s cognitive capacities and especially their visual channel. In this case, text and pictures would not be integrated into one coherent mental model, and effective learning would not take place.

Keywords

Multimedia learning Multimedia effect Modality effect Elementary school children Split attention 

Notes

Acknowledgments

This paper was part of a project funded by the German Research foundation (DFG), grant no. LE 645/9-3.

References

  1. Ainsworth, S. (2010). Improving learning by drawing. Paper presented at the 9th International Conference of the Learning Sciences (ICLS). Chicago, USA.Google Scholar
  2. Ainsworth, S. E., & Loizou, A. (2003). The effects of self-explaining when learning with text or diagrams. Cognitive Science, 27, 669–681.CrossRefGoogle Scholar
  3. Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096–1097.CrossRefGoogle Scholar
  4. Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., Raths, J., & Wittrock, M. C. (2001). A taxonomy for learning, teaching, and assessing: a revision of Bloom’s taxonomy of educational objectives. New York: Longman.Google Scholar
  5. Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40, 199–209.CrossRefGoogle Scholar
  6. Azevedo, R., & Cromley, J. G. (2004). Does training on self-regulated learning facilitate students’ learning with hypermedia? Journal of Educational Psychology, 96(3), 523–535.CrossRefGoogle Scholar
  7. Baddeley, A. D. (1999). Human memory. Boston: Allyn & Bacon.Google Scholar
  8. Bobis, J., Sweller, J., & Cooper, M. (1993). Cognitive load effects in a primary-school geometry task. Learning and Instruction, 3, 1–21.CrossRefGoogle Scholar
  9. Brookshire, J., Scharff, L. F. V., & Moses, L. E. (2002). The influence of illustrations on children’s book preferences and comprehension. Reading Psychology, 23, 323–339.CrossRefGoogle Scholar
  10. Brünken, R., & Leutner, D. (2001). Aufmerksamkeitsverteilung oder Aufmerksamkeits-fokussierung? Empirische Ergebnisse zur „Split-Attention-Hypothese“beim Lernen mit Multimedia [Splitting or focussing attention. Empirical results for a “split-attention hypothesis” of multimedia learning]. Unterrichtswissenschaft, 29, 357–366.Google Scholar
  11. Brünken, R., Plass, J. L., & Leutner, D. (2004). Assessment of cognitive load in multimedia learning with dual-task methodology: auditory load and modality effects. Instructional Science, 32, 115–132.CrossRefGoogle Scholar
  12. Bryant, J., Brown, D., Silberberg, A. R., & Elliot, S. M. (1981). Effects of humorous illustrations in college textbooks. Human Communication Research, 8, 43–57.CrossRefGoogle Scholar
  13. Carney, R. N., & Levin, J. R. (2002). Pictorial illustrations still improve students’ learning from text. Educational Psychology Review, 14, 5–26.CrossRefGoogle Scholar
  14. Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332.CrossRefGoogle Scholar
  15. Chandler, P., & Sweller, J. (1992). The split-attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62, 233–246.CrossRefGoogle Scholar
  16. Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152.CrossRefGoogle Scholar
  17. Chi, M. T. H., Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.Google Scholar
  18. Cohen, J. (1977). Statistical power analysis for the behavioral sciences. New York: Elsevier.Google Scholar
  19. Cook, M. (2006). Visual representations in science education: the influence of prior knowledge and cognitive load on instructional design principles. Science Education, 90(6), 1079–1091.CrossRefGoogle Scholar
  20. De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2007). Attention cueing as a means to enhance learning from an animation. Applied Cognitive Psychology, 21(6), 731–746.CrossRefGoogle Scholar
  21. De Westelinck, K., Valcke, M., De Craene, B., & Kirschner, P. (2005). The cognitive theory of multimedia learning in the social sciences knowledge domain: limitations of external graphical representations. Computers in Human Behavior, 21, 555–573.CrossRefGoogle Scholar
  22. Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39, 175–191.CrossRefGoogle Scholar
  23. Feger, B. (1984). Die Generierung von Testitems zu Lehrtexten [The generation of test items for educational texts]. Diagnostica, 30, 24–46.Google Scholar
  24. Fletcher, J. D., & Tobias, S. (2005). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 117–133). Cambridge: Cambridge University.CrossRefGoogle Scholar
  25. Freisinger, S. D. (1976). The effect of cartoon-embellished programmed textual instruction on students’ learning and affective learning. Paper presented at the annual meeting of the Association for Educational Communications and Technology, Anaheim, California. (ERIC Document Reproduction Service No. ED 128 008).Google Scholar
  26. Gilbert, J. K. (2008). Visualization: an emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: theory and practice in science education (pp. 3–24). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  27. Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.CrossRefGoogle Scholar
  28. Goldstein, R., & Underwood, G. (1981). The influence of pictures on the derivation of meaning from children’s reading materials. Journal of Research in Reading, 4, 6–16.CrossRefGoogle Scholar
  29. Green, J. G., Moos, D. C., Azevedo, R. A., & Winters, F. I. (2008). Exploring differences between gifted and grade-level students’ use of self-regulatory learning processes with hypermedia. Computers in Education, 50, 1069–1083.CrossRefGoogle Scholar
  30. Harskamp, E. G., Mayer, R. E., & Suhre, C. (2007). Does the modality principle for multimedia learning apply to science classrooms? Learning and Instruction, 17, 465–477.CrossRefGoogle Scholar
  31. Heller, K. A., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4. bis 12. Klassen Revision (KFT 4-12 + R) [Cognitive abilities test for grades 4 to 12, revised version]. Göttingen: Hogrefe.Google Scholar
  32. Höffler, T., Schmeck, A., & Opfermann, M. (2013). Static and dynamic visual representations: individual differences in processing. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays: current perspectives on cognition, learning, and instruction (pp. 133–163). Charlotte: Information Age.Google Scholar
  33. Jaccard, J. (2006). Zumastat 4.0. [Computer software]. Miami: Applied Scientific Analysis.Google Scholar
  34. Keller, R. W. (2005). Real science-4-kids. Biology level I. Rio Rancho: Gravitas.Google Scholar
  35. Keller, R. W. (2011). Real science-4-kids. Chemistry level I. Rio Rancho, NM: Gravitas.Google Scholar
  36. Klauer, K. J. (1985). Framework for a theory of teaching. Teaching and Teacher Education, 1(1), 5–17.CrossRefGoogle Scholar
  37. Klauer, K. J. (1987). Kriteriumorientierte Tests. Lehrbuch der Theorie und Praxis lehrzielorientierten Messens. [Criterion-referenced tests. Textbook for theory and praxis of educational objectives’ measurement]. Göttingen: Hogrefe.Google Scholar
  38. Kozma, R. (2003). Innovative practices from around the world: integrating technology into the classroom. Leading and Learning, 21, 52–54.Google Scholar
  39. Lenhard, W., & Schneider, W. (2006). ELFE 1–6: Ein Leseverständnistest für Erst- bis Sechstklässler [ELFE 1–6: a reading comprehension test for grade 1 to 6]. Göttingen: Hogrefe.Google Scholar
  40. Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: effects of drawing and imagining text content. Computers in Human Behavior, 25, 284–289.CrossRefGoogle Scholar
  41. Levie, W. H., & Lentz, R. (1982). Effects of text illustrations—a review of research. Educational Communication and Technology Journal, 30, 195–232.Google Scholar
  42. Levin, J. R., Anglin, G. J., & Carney, R. N. (1987). On empirically validating functions of pictures in prose. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. Basic research (pp. 51–85). New York: Springer.CrossRefGoogle Scholar
  43. Lin, L., & Atkinson, R. K. (2011). Using animations and visual cueing to support learning of scientific concepts and processes. Computers & Education, 56(3), 650–658.CrossRefGoogle Scholar
  44. Lipsey, M. W. (1990). Design sensitivity. Statistical power for experimental design. Newbury Park: Sage.Google Scholar
  45. Mayer, R. E. (Ed.). (2005). The Cambridge handbook of multimedia learning. Cambridge: Cambridge University.Google Scholar
  46. Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge: Cambridge University.CrossRefGoogle Scholar
  47. Mayer, R. (2010). Unique contribution of eye-tracking research to the study of learning with graphics. Learning and Instruction, 20, 167–171.CrossRefGoogle Scholar
  48. Mayer, R. E., & Fiorella, L. (2014). Principles for reducing extraneous processing in multimedia learning: coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (2nd ed., pp. 279–315). New York: Cambridge University.CrossRefGoogle Scholar
  49. Mayer, R. E., & Moreno, R. (1998). A split-attention effect in multimedia learning: evidence for dual processing systems in working memory. Journal of Educational Psychology, 90, 312–320.CrossRefGoogle Scholar
  50. Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reducing cognitive load by mixing auditory and visual presentation modes. Journal of Educational Psychology, 87, 319–334.CrossRefGoogle Scholar
  51. Paivio, A. (1986). Mental representation: a dual coding approach. New York: Oxford University.Google Scholar
  52. Peeck, J. (1974). Retention of pictorial and verbal content of a text with illustrations. Journal of Educational Psychology, 66, 880–888.CrossRefGoogle Scholar
  53. Peeck, J. (1987). The role of illustrations in processing and remembering illustrated text. In D. M. Willows & H. A. Houghton (Eds.), The psychology of illustration: I. Basic research (pp. 115–151). New York: Springer.CrossRefGoogle Scholar
  54. Peeck, J. (1994). Wissenserwerb mit darstellenden Bildern. [Knowledge acquisition with representational illustrations]. In B. Weidenmann (Ed.), Wissenserwerb mit Bildern. Instruktionale Bilder in Printmedien, Film/Video und Computerprogrammen (pp. 59–94). Bern: Huber.Google Scholar
  55. Pelaez, N. J., Boyd, D. D., Rojas, J. B., & Hoover, M. A. (2005). Prevalence of blood circulation misconceptions among prospective elementary teachers. Advances in Physiology Education, 29, 172–181.CrossRefGoogle Scholar
  56. Rey, G. D. (2012). How seductive are decorative elements in learning material? Journal of Educational Multimedia and Hypermedia, 21, 257–283.Google Scholar
  57. Schmeck, A., Mayer, R., Opfermann, M., Pfeiffer, V., & Leutner, D. (2014). Drawing pictures during learning from scientific text: testing the generative drawing effect and the prognostic drawing effect. Contemporary Educational Psychology, 39, 275–286.CrossRefGoogle Scholar
  58. Schmeck, A., Opfermann, M., Van Gog, T., Paas, F., & Leutner, D. (2015). Measuring cognitive load with subjective rating scales during problem solving: differences between immediate and delayed ratings. Instructional Science, 43(1), 93–114.CrossRefGoogle Scholar
  59. Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010). A closer look at split visual attention in system- and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100–110.CrossRefGoogle Scholar
  60. Schnotz, W. (2002). Towards an integrated view of learning from text and visual displays. Educational Psychology Review, 14, 101–120.CrossRefGoogle Scholar
  61. Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 49–69). Cambridge: Cambridge University.CrossRefGoogle Scholar
  62. Schnotz, W., Bannert, M., & Seufert, T. (2002). Towards an integrative view of text and picture comprehension: visualization effects on the construction of mental models. In J. Otero, A. Graesser, & J. A. Leon (Eds.), The psychology of science text comprehension (pp. 385–416). Mahwah: Erlbaum.Google Scholar
  63. Segers, E., Verhoeven, L., & Hulstijn-Hendrikse, N. (2008). Cognitive processes in children’s multimedia text learning. Applied Cognitive Psychology, 22, 375–387.CrossRefGoogle Scholar
  64. Sweller, J. (2005). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 19–30). Cambridge: Cambridge University.CrossRefGoogle Scholar
  65. Sweller, J., Chandler, P., Tierney, P., & Cooper, M. (1990). Cognitive load and selective attention as factors in the structuring of technical material. Journal of Experimental Psychology: General, 119, 176–192.CrossRefGoogle Scholar
  66. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.CrossRefGoogle Scholar
  67. Sweller, J., van Merriënboer, J., & Paas, F. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10, 251–296.Google Scholar
  68. Tabbers, H. K., Martens, R. L., & van Merriënboer, J. J. G. (2004). Multimedia instructions and cognitive load theory: effects of modality and cueing. British Journal of Educational Psychology, 74, 71–81.CrossRefGoogle Scholar
  69. Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3, 257–287.Google Scholar
  70. Treagust, D. F., & Tsui, D. (2013). Multiple representations in biological education. Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  71. Van Meter, P., & Firetto, C. M. (2013). Cognitive model of drawing construction: learning through the construction of drawings. In G. J. Schraw, M. T. McCrudden, & D. R. Robinson (Eds.), Learning through visual displays (pp. 247–380). Charlotte: Information Age.Google Scholar
  72. Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17, 285–325.CrossRefGoogle Scholar
  73. Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31, 142–166.CrossRefGoogle Scholar
  74. Vavra, K. L., Janjic-Watrich, V., Loerke, K., Phillips, L. M., Norris, S. P., & Macnab, J. (2011). Visualization in science education. Alberta Science Education Journal, 41, 22–30.Google Scholar
  75. Weidenmann, B. (1993). Informierende Bilder. [Informational pictures.]. In B. Weidenmann (Ed.), Wissenserwerb mit Bildern [Knowledge acquisition with pictures.] (pp. 9–58). Bern: Hans Huber.Google Scholar
  76. Yeung, A. S., Jin, P., & Sweller, J. (1997). Cognitive load and learner expertise: split-attention and redundancy effects in reading with explanatory notes. Contemporary Educational Psychology, 23, 1–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Simone Herrlinger
    • 1
  • Tim N. Höffler
    • 2
  • Maria Opfermann
    • 3
  • Detlev Leutner
    • 3
  1. 1.Formerly Duisburg-Essen UniversityEssenGermany
  2. 2.IPN—Leibniz Institute for Science and Mathematics Education at the University of KielKielGermany
  3. 3.Duisburg-Essen UniversityEssenGermany

Personalised recommendations