Skip to main content

Advertisement

Log in

Shadow Formation at Preschool from a Socio-materiality Perspective

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The paper is set in socio-material farming to offer a way of conceptualising actions and interactions of children in preschool involved in the understanding of scientific concepts. A model of early science education about the physical phenomena of shadow formation is implemented in group work in a French context. The research involved 44 children (13 females and 31 males) of 5–6 years old. The research design was organised in three video recording steps: pre-test, teaching session and post-test. We focus on the analysis of nine teaching sessions to investigate children’s ‘understanding’ of shadow formation. A descriptive and qualitative approach was used. In particular, we have identified three main categories (the interaction of the children with the tools, the embodiment and verbal dimension)—with respective indicators—to perform the analysis. From the results, all the categories explored seem to influence each other: all material, human and social dimensions contribute to the children’s understanding of shadow formation. Also we have identified some elements that can serve as a potential source of improvement of the teaching session on shadow formation. Finally, the research provides insights on how to improve science activities in preschool with the aim of supporting early understanding of physical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ackerman, E. (2007). Experiences of artifacts: people’s appropriation/object’s ‘Affordances’. In E. Von Glasersfeld (Ed.), Keyworks in radical constructivism (pp. 249–259). Rotterdam: Sense Publishers.

    Google Scholar 

  • Austin, J. (1962). How to do things with words. Oxford: Oxford University Press.

    Google Scholar 

  • Bächtold, M. (2013). What do students “construct” according to constructivism in science education? Research in Science Education, 43(6), 2477–2496.

    Article  Google Scholar 

  • Baillargeon, R. (2002). The acquisition of physical knowledge in infancy: a summary in eight lessons. Blackwell Handbook of Childhood Cognitive Development, 1, 46–83.

    Google Scholar 

  • Bennett, J. (2010). Vibrant matter: a political ecology of things. Durham: Duke University Press.

    Google Scholar 

  • Boilevin, J.-M. (2013). Rénovation de l’enseignement des sciences physiques et formation des enseignants. Bruxelles: De Boeck.

    Google Scholar 

  • Bruner, J. S. (1990). Acts of Meaning. Cambridge: Harvard University Press.

    Google Scholar 

  • Carey, S. (1985). Conceptual change in childhood. Cambridge: Bradford Books, MIT Press.

    Google Scholar 

  • Chalufour, I., & Worth, K. (2005). Exploring water with young children (The Young Scientist Series). St. Paul: Red Leaf Press.

    Google Scholar 

  • Chen, S.-M. (2009). Shadows: young Taiwanese children’s views and understanding. International Journal of Science Education, 31(1), 59–79.

    Article  Google Scholar 

  • Clark, A. (2010). Transforming children’s spaces. Abingdon and New York: Routledge.

    Google Scholar 

  • Cole, M. (1996). Cultural Psychology. Cambridge: Harvard University Press.

    Google Scholar 

  • Dawson, C., & Lyndon, H. (1997). Conceptual mediation: a new perspective on conceptual exchange. Research in Science Education, 27(2), 399–404.

    Article  Google Scholar 

  • Dedes, C., & Ravanis, K. (2009). Teaching image formation by extended light sources: the use of a model derived from the history of science. Research in Science Education, 39, 57–73.

    Article  Google Scholar 

  • Delserieys, A., Jégou, C., & Givry, D. (2014). Preschool children understanding of a precursor model of shadow formation. In C. P. Constantinou, N. Papadouris, & A. Hadjigeorgiou (Eds.), E-Book Proceedings of the ESERA 2013 Conference: Science Education Research For Evidence-based Teaching and Coherence in Learning. Part 15 (co-ed. E. Glauert & F. Stylianidou, Early years science education) (pp. 5–13). European Science Education Research Association: Nicosia.

    Google Scholar 

  • DiSessa, A. A. (2006). A history of conceptual change research: threads and fault lines. In K. Sawyer (Ed.), The Cambridge Handbook of the Learning Sciences (pp. 265-282). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dockrell, J. E., Braisby, N., & Best, R. M. (2007). Children’s acquisition of science terms: simple exposure is insufficient. Learning and Instruction, 17(6), 577–594.

    Article  Google Scholar 

  • Duit, R., & Treagust, D. F. (2003). Conceptual change: a powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688.

    Article  Google Scholar 

  • Dumas Carré, A., Weil-Barais, A., Ravanis, K., & Shourcheh, F. (2003). Interactions maître-élèves en cours d’activités scientifiques à l’école maternelle : approche comparative. Bulletin de Psychologie, 56(4), 493–508.

    Google Scholar 

  • Ergazaki, M., Saltapida, K., & Zogza, V. (2010). From young children’s ideas about germs to ideas shaping a learning environment. Research in Science Education, 40(5), 699–715.

    Article  Google Scholar 

  • Eshach, H., & Fried, M. N. (2005). Should science be taught in early childhood? Journal of Science Education and Technology, 14(3), 315–336.

    Article  Google Scholar 

  • Eurydice. (2009). Tackling social and cultural inequalities through Early Childhood Education and Care in Europe. Brussels: European Commission.

    Google Scholar 

  • Fleer, M. (1990). Scaffolding conceptual change in early childhood. Research in Science Education, 20(1), 114–123.

    Article  Google Scholar 

  • Fleer, M. (1996). Early learning about light: mapping preschool children’s thinking about light before, during and after involvement in a two week teaching program. International Journal of Science Education, 18(7), 819–836.

    Article  Google Scholar 

  • Fleer, M. (2009). Understanding the dialectical relations between everyday concepts and scientific concepts within play-based programs. Research in Science Education, 39(2), 281–306.

    Article  Google Scholar 

  • Fleer, M., & March, S. (2009). Engagement in science, engineering and technology in the early years: a cultural-historical reading. Review of Science, Mathematics and ICT Education, 3(1), 23–47.

    Google Scholar 

  • Fleer, M., & Robbins, J. (2003). Understanding our youngest scientific and technological thinkers: international developments in early childhood science education. Research in Science Education, 33(4), 399–404.

    Article  Google Scholar 

  • Fleer, M., Gomes, J. J., & March, S. E. (2014). Science learning affordances in preschool environments. Australasian Journal of Early Childhood, 39(1), 38–48.

    Google Scholar 

  • Flewitt, R. (2006). Using video to investigate preschool classroom interaction: Education research assumptions and methodological practices. Visual Communication, 5(1), 25–50.

    Article  Google Scholar 

  • Forman, E. A., & Carr, N. (1992). Using peer collaboration to foster scientific thinking: what determines success? Paper presented at Annual Meeting of American Educational Research Association, San Francisco, USA.

  • Gallegos-Cázares, L., Flores-Camacho, F., & Calderón-Canales, E. (2009). Preschool science learning: The construction of representations and explanations about color, shadows, light and images. Review of Science, Mathematics and ICT Education, 3(1), 49–73.

    Google Scholar 

  • Ghiglione, R., & Blanchet, A. (1991). Analyse de contenu et contenus d’analyses. Paris: Dunod.

    Google Scholar 

  • Gibson, J. J. (1986). The Ecological approach to visual perception. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Gillespie, A., & Zittoun, T. (2013). Meaning making in motion: bodies and minds moving through institutional and semiotic. Culture and Psychology, 19(4), 518–532.

    Article  Google Scholar 

  • Glaser, B. G. (1998). Doing Grounded Theory: Issue and discussions. Mill Valley: Sociology Press.

    Google Scholar 

  • Goldin-Meadow, S. (2003). Hearing gesture: How our hands help us think. Cambridge: Harvard University Press.

    Google Scholar 

  • Goodwin, C. (2000). Action and embodiment within situated human interaction. Journal of Pragmatics, 32, 1489–1522.

    Article  Google Scholar 

  • Gredler, M. E. (2009). Hiding in plain sight: the stages of mastery/self-regulation in Vygotski’s cultural-historical theory. Educational Psychologist, 44(1), 1–19.

    Article  Google Scholar 

  • Grossen, M. (2001). La notion de contexte: quelle définition pour quelle psychologie? Un essai de mise au point. In J.-P. Bernié (Ed.), Apprentissage, développement et significations (pp. 59–76). Bordeaux: Presses Universitaires de Bordeaux.

    Google Scholar 

  • Hare, A. P. (1994). Types of roles in small groups: a bit of history and a current perspective. Small Group Research, 25, 443–448.

    Article  Google Scholar 

  • Herakleioti, E., & Pantidos, P. (2015). The contribution of the human body in young children’s explanations about shadow formation. Research in Science Education. doi:10.1007/s11165-014-9458-2.

    Google Scholar 

  • Hsieh, H. F., & Shannon, S. E. (2005). Three approaches to qualitative content analysis. Qualitative Health Research, 15(9), 1277–1288.

    Article  Google Scholar 

  • Hutchins, E. (1995). Cognition in the Wild. Cambridge: MIT Press.

    Google Scholar 

  • Jacobs, J. K., Kawanaka, T., & Stigler, J. W. (1999). Integrating qualitative and quantitative approaches to the analysis of video data on classroom teaching. International Journal of Educational Research, 31, 717–724.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1992). Beyond modularity: a developmental approach to cognitive science. Cambridge: MIT Press.

    Google Scholar 

  • Kohn, A. (1993). Preschooler’s knowledge about density: will it float? Child Development, 64, 1637–1650.

    Article  Google Scholar 

  • Kontopodis, M. (2012). How things matter in everyday lives of preschool age children: material-semiotic investigations in psychology and education. Journal für Psychologie, 20(1), 1–12.

    Google Scholar 

  • Latour, B. (1996). On interobjectivity. Mind, Culture, and Activity, 3(4), 228–245.

    Article  Google Scholar 

  • Lécuyer, R. (Ed.). (2004). Le développement du nourrisson: Du cerveau au milieu social et du fœtus au jeune enfant. Paris: Dunod.

    Google Scholar 

  • Lemeignan, G., & Weil‐Barais, A. (1994). A developmental approach to cognitive change in mechanics. International Journal of Science Education, 16(1), 99–120.

    Article  Google Scholar 

  • Lemke, J. L. (1990). Talking science: Language, learning, and values. Norwood: Ablex.

    Google Scholar 

  • Léna, P. (2009). Europe rethinks education. Science, 326(5952), 501.

    Article  Google Scholar 

  • Lenz Taguchi, H. (2010). Going beyond the theory: Practice divide in Early Childhood Education. Introducing an Intra-Active Pedagogy. London: Routledge.

    Google Scholar 

  • Levy, E. T., & McNeill, D. (2013). Narrative development as symbol formation: gestures, imagery and the emergence of cohesion. Culture and Psychology, 19(4), 463–483.

    Article  Google Scholar 

  • Lockman, J. J. (2000). A perception-action perspective on tool use development. Child Development, 71, 137–144.

    Article  Google Scholar 

  • Lubart, T. I., Mouchiroud, C., Tordjman, S., & Zenasni, F. (2003). Psychology of creativity. Paris: Armand Colin.

    Google Scholar 

  • Mäkitalo, Å., Jakobsson, A., & Säljö, R. (2009). Learning to reason in the context of socioscientific problems. exploring the demands on students in ’new’ classroom activites. In K. Kumpulainen, C. Hmelo-Silver, & M. Cesar (Eds.), Investigating classroom interaction. Methodologies in action (pp. 7–26). Rotterdam: Sense Publishers.

    Google Scholar 

  • Mehmeti, T., Miserez-Caperos, C. & Breux, S. (2014). Objects’ influence on knowledge-oriented argumentation in children: an exploratory study. Poster presented in Workshop “Expansion(s) of experience: Symbolic and material dimensions” Neuchâtel, 6-7 November.

  • Mercier, H. (2011). Reasoning serves argumentation in children. Cognitive Development, 26, 177–191.

    Article  Google Scholar 

  • Muller Mirza, N., & Perret-Clermont, A.-N. (Eds.). (2009). Argumentation and education: theoretical foundations and practices. Dordrecht: Springer.

    Google Scholar 

  • Naylor, S., Keogh, B., & Downing, B. (2007). Argumentation and primary science. Research in Science Education, 37, 17–39.

    Article  Google Scholar 

  • Newton, P., Driver, R., & Osborne, J. (1999). The place of argumentation in the pedagogy of school science. International Journal of Science Education, 21(5), 553–576.

    Article  Google Scholar 

  • Nordtømme, S. (2012). Place, space and materiality for pedagogy in a kindergarten. Education Inquiry, 3(3), 317–333.

    Article  Google Scholar 

  • Ntalakoura, V., & Ravanis, K. (2014). Changing preschool children’s representations of light: a scratch based teaching approach. Journal of Baltic Science Education, 13(2), 191–200.

    Google Scholar 

  • Ogborn, J., Kress, G., Martins, I., & Mc Gillicuddy, K. (1996). Explaining science in the classroom. Buckingham: Open University Press.

    Google Scholar 

  • Orlikowski, W. J., & Scott, S. V. (2008). Sociomateriality: challenging the separation of technology, work and organization. Academy of Management Annals, 2(1), 433–474.

    Article  Google Scholar 

  • Otero, V. K. (2004). Cognitive processes and the learning of physics part I: the evolution of knowledge from a Vygotskian perspective. In E. F. Redish & M. Vicentini (Eds.), Proceedings of the International School of Physics “Enrico Fermi” (pp. 409–445). Amsterdam: Ios Press.

    Google Scholar 

  • Parker, J. (2006). Exploring the impact of varying degrees of cognitive conflict in the generation of both subject and pedagogical knowledge as primary trainee teachers learn about shadow formation. International Journal of Science Education, 28(13), 1545–1577.

    Article  Google Scholar 

  • Perret-Clermont, A.-N., & Carugati, F. (2001). Learning and Instruction, social-cognitive perspectives. In N. J. Smelser & P. B. Baltes (Eds.), International Encyclopedia of the Social and Behavioral Sciences (pp. 8586–8588). Oxford: Pergamon.

    Chapter  Google Scholar 

  • Perret-Clermont, A.-N., Breux, S., Greco Morasso, S., & Miserez-Caperos, C. (2014). Children and knowledge-oriented argumentation. Some notes for future research. In G. Gobber & A. Rocci (Eds.), Language, reason and education. Studies in honor of Eddo Rigotti (pp. 259–277). Bern: Peter Lang.

    Google Scholar 

  • Rambusch, J., & Ziemke, T. (2005) Embodiment aspects in Human Computer-Game Interaction. The European Conference on Computing and Philosophy, E-CAP 2005, Västerås, Sweden.

  • Ravanis, K. (1996). Stratégies d’interventions didactiques pour l’initiation des enfants de l’école maternelle en sciences physiques. Revue de Recherches en Éducation: Spirale, 17, 161–176.

    Google Scholar 

  • Ravanis, K. (1998). Procédures didactiques de déstabilisation des representations spontanées des élèves de 5 et 10 ans. Le cas de la formation des ombres. In A. Dumas Carré & A. Weil-Barais (Eds.), Tutelle et mediation dans l’éducation scientifique (105-121). Berne: Peter Lang.

    Google Scholar 

  • Ravanis, K. (2010). Représentations, Modèles Précurseurs, Objectifs-Obstacles et Médiation-Tutelle: concepts-clés pour la construction des connaissances du monde physique à l’âge de 5-7 ans. Revista Electrónica de Investigación en Educación en Ciencias, 5(2), 1–11.

    Google Scholar 

  • Ravanis, K., Koliopoulos, D., & Boilevin, J.-M. (2008). Construction of a precursor model for the concept of rolling friction in the thought of preschool age children: A socio-cognitive teaching intervention. Research in Science Education, 38(4), 421–434.

    Article  Google Scholar 

  • Ravanis, K., Christidou, V., & Hatzinikita, V. (2013). Enhancing conceptual change in preschool children’s representations of light: a socio-cognitive approach. Research in Science Education, 43(6), 2257–2276.

    Article  Google Scholar 

  • Rigotti, E., & Greco Morasso, S. (2009). Argumentation as an object of interest and as a social and cultural resource. In N. M. Mirza & A.-N. Perret-Clermont (Eds.), Argumentation and education (pp. 9–66). New York: Springer.

    Chapter  Google Scholar 

  • Roth, W.-M. (2002). Scientific investigations, metaphorical gestures, and the emergence of abstract scientific concepts. Learning and Instruction, 12(3), 285–304.

    Article  Google Scholar 

  • Scardamalia, M., & Bereiter, C. (2003). Knowledge building. In Encyclopedia of education (pp. 1370-1373). New York: Macmillan Reference.

  • Sørensen, E. (2009). The materiality of learning: Technology and knowledge in educational practice. New York: Cambridge University Press.

    Book  Google Scholar 

  • Suchman, L. (2007). Plans and situated actions. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tudge, J. (1989). When collaboration leads to regression: some negative consequences of sociocognitive conflict. European Journal of Social Psychology, 19, 123–138.

    Article  Google Scholar 

  • Tudge, J. R. H., & Winterhoff, P. A. (1993). Vygotsky, Piaget, and Bandura: perspectives on the relations between the social world and cognitive development. Human Development, 36, 61–68.

    Article  Google Scholar 

  • van Eemeren, F. H. (2010). Strategic maneuvering in argumentative discourse: Extending the pragma-dialectical theory of argumentation. Amsterdam/Philadelphia: John Benjamins.

    Book  Google Scholar 

  • Vygotsky, L. S. (1978). Mind in Society: the Development of higher psychological processes. Cambridge: Mass, Harvard University Press.

    Google Scholar 

  • Wartofsky, M. W. (1973). Models: Representation and the scientific understanding. Dordrecht: Reidel.

    Google Scholar 

  • Weil-Barais, A. (1994). Heuristic value of the notion of zone of proximal development in the study of child and adolescent construction of concepts in physics. European Journal of Psychology of Education, 9(4), 367–383.

    Article  Google Scholar 

  • Weil-Barais, A. (2001). Constructivist approaches and the teaching of science. Prospects, 31(2), 187–196.

    Article  Google Scholar 

  • Weil-Barais, A., & Resta-Schweitzer, M. (2008). Approche cognitive et developpementale de la médiation en contexte d’enseignement-apprentissage. La Nouvelle Revue de l’Adaptation et de la Scolarisation, 42, 83–98.

    Google Scholar 

  • Wittgenstein, L. (1965). Philosophical Investigations. New York: The Macmillan Company.

    Google Scholar 

  • Wood, D. J., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17, 89–100.

    Article  Google Scholar 

  • Worth, K., & Grollman, S. (2003). Worms, shadows, and whirlpools: Science in the early childhood classroom. Washington, DC: National Association for Education of Young Children.

    Google Scholar 

  • Yin, K. R. (2014). Case study research. Design and methods. UK: Sage Publications.

    Google Scholar 

  • Ziemke, T. (2013). What’s that thing called embodiment? Retrived from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.453.956&rep=rep1&type=pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Antonietta Impedovo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Impedovo, M.A., Delserieys-Pedregosa, A., Jégou, C. et al. Shadow Formation at Preschool from a Socio-materiality Perspective. Res Sci Educ 47, 579–601 (2017). https://doi.org/10.1007/s11165-016-9518-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-016-9518-x

Keywords

Navigation