Skip to main content
Log in

Kindergarten and Primary School Children’s Everyday, Synthetic, and Scientific Concepts of Clouds and Rainfall

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The purpose of this research was to explore children’s understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud formation and rain in kindergarten (age 5–7), second (age 8–9) and fourth (age 10–11) grade children, who were questioned on the basis of structured interview technique. In order to represent consistency in children’s answers, three different types of clouds were introduced (a cirrus cloud, a cumulus cloud, and a rain cloud). Our results indicate that children in different age groups gave a similarly high amount of synthetic answers, which suggests the need for teachers to understand the formation process of different misconceptions to better support the learning process. Even children in kindergarten may have conceptions that represent different elements of scientific understanding and misconceptions cannot be considered age-specific. Synthetic understanding was also shown to be more consistent (not depending on cloud type) suggesting that gaining scientific understanding requires the reorganisation of existing concepts, that is time-consuming. Our results also show that the appearance of the cloud influences children’s answers more in kindergarten where they mostly related rain cloud formation with water. An ability to create abstract connections between different concepts should also be supported at school as a part of learning new scientific information in order to better understand weather-related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assaraf, O. B. Z., & Orion, N. (2005). Development of system thinking skills in the context of Earth system education. Journal of Research in Science Teaching, 42(5), 518–560.

    Article  Google Scholar 

  • Bar, V. (1989). Children’s views about the water cycle. Science Education, 73, 481–500. doi:10.1002/sce.3730730409.

    Article  Google Scholar 

  • Bar, V., & Galili, I. (1994). Stages of children’s views about evaporation. International Journal of Science Education, 16, 157–174. doi:10.1080/0950069940160205.

    Article  Google Scholar 

  • Bar, V., & Travis, A. (1991). Children’s views concerning phase changes. Journal of Research in Science Teaching, 28, 363–382. doi:10.1002/tea.3660280409.

    Article  Google Scholar 

  • Biemans, H. J., Deel, O. R., & Simons, P. (2001). Differences between successful and less successful students while working with the CONTACT-2 strategy. Learning and Instruction, 11(4), 265–282. doi:10.1016/S0959-4752(00)00033-5.

    Article  Google Scholar 

  • Bishop, B. A., & Anderson, C. W. (1990). Student conceptions of natural selection and its role in evolution. Journal of Research in Science Teaching, 27(5), 415–427. doi:10.1002/tea.3660270503.

    Article  Google Scholar 

  • Brown, D. E., & Hammer, D. (2008). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 127–155). New York: Routledge.

    Google Scholar 

  • Carey, S. (1992). The origin and evolution of everyday concepts. Cognitive Models of Science, 15, 89–128.

    Google Scholar 

  • Chi, M. T. H., & Slotta, J. D. (1993). The ontological coherence of intuitive physics. Cognition and Instruction, 10, 249–260. doi:10.1080/07370008.1985.9649011.

    Article  Google Scholar 

  • Christidou, V., & Hatzinikita, V. (2006). Preschool children’s explanations of plant growth and rain formation: a comparative analysis. Research in Science Education, 36(3), 187–210.

    Article  Google Scholar 

  • Cliff, W. H. (2009). Chemistry misconceptions associated with understanding calcium and phosphate homeostasis. Advances in Physiology Education, 33(4), 323–328. doi:10.1152/advan.00073.2009.

    Article  Google Scholar 

  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.

    Article  Google Scholar 

  • Department for Education, (2013). National curriculum in England: science programmes of study. Retrieved from https://www.gov.uk/government/publications/national-curriculum-in-england-science-programmes-of-study

  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–225. doi:10.1080/07370008.1985.9649008.

    Article  Google Scholar 

  • Disessa, A. A. (2002). Why “conceptual ecology” is a good idea. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: issues in theory and practice (pp. 28–60). Springer: Netherlands.

    Chapter  Google Scholar 

  • diSessa, A. A., Gillespie, N. M., & Esterly, J. B. (2004). Coherence versus fragmentation in the development of the concept of force. Cognitive Science, 28(6), 843–900. doi:10.1016/j.cogsci.2004.05.003.

    Article  Google Scholar 

  • Dove, J. (1998). Alternative conceptions about the weather. School Science Review, 79(289), 65–69.

    Google Scholar 

  • Driver, R., Asoko, H., Leach, J., Scott, P., & Mortimer, E. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5–12. doi:10.3102/0013189X023007005.

    Article  Google Scholar 

  • Duit, R. (2007). Science education research internationally: conceptions, research methods, domains of research. Eurasia Journal of Mathematics, Science and Technology Education, 3(1), 3–15.

    Google Scholar 

  • Duit, R., Treagust, D. F., & Widodo, A. (2008). Teaching science for conceptual change: theory and practice. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 629–646). New York: Routledge.

    Google Scholar 

  • Field, A. (2009). Discovering statistics using SPSS. London: Sage publications.

    Google Scholar 

  • Gadgil, S., Nokes-Malach, T. J., & Chi, M. T. (2012). Effectiveness of holistic mental model confrontation in driving conceptual change. Learning and Instruction, 22(1), 47–61. doi:10.1016/j.learninstruc.2011.06.002.

    Article  Google Scholar 

  • González, F. M. (1997). Diagnosis of Spanish primary school students’ common alternative science conceptions. School Science and Mathematics, 97, 68–74. doi:10.1111/j.1949-8594.1997.tb17345.x.

    Article  Google Scholar 

  • Graham, T., Berry, J., & Rowlands, S. (2013). Are ‘misconceptions’ or alternative frameworks of force and motion spontaneous or formed prior to instruction? International Journal of Mathematical Education in Science and Technology, 44(1), 84–103. doi:10.1080/0020739X.2012.703333.

    Article  Google Scholar 

  • Hammer, D. (2000). Student resources for learning introductory physics. American Journal of Physics, 68(S1), S52–S59. doi:10.1119/1.19520.

    Article  Google Scholar 

  • Hannust, T., & Kikas, E. (2007). Children’s knowledge of astronomy and its change in the course of learning. Early Childhood Research Quarterly, 22, 89–104. doi:10.1016/j.ecresq.2006.11.001.

    Article  Google Scholar 

  • Hatzinikita, V., & Koulaidis, V. (1997). Pupils’ ideas on conservation during changes in the state of water. Research in Science and Technological Education, 15(1), 53–70. doi:10.1080/0263514970150104.

    Article  Google Scholar 

  • Henriques, L. (2002). Children’s ideas about weather: a review of the literature. School Science and Mathematics, 102, 202–215. doi:10.1111/j.1949-8594.2002.tb18143.x.

    Article  Google Scholar 

  • Inagaki, K., & Hatano, G. (2008). Conceptual change in naive biology. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 240–263). New York: Routledge.

    Google Scholar 

  • Ioannides, C., & Vosniadou, S. (2002). Exploring the changing meanings of force: from coherence to fragmentation. Cognitive Science Quarterly, 2(1), 5–61.

    Google Scholar 

  • Johnson, R. B., & Onwuegbuzie, A. J. (2004). Mixed methods research: a research paradigm whose time has come. Educational Researcher, 33(7), 14–26.

    Article  Google Scholar 

  • Karmiloff-Smith, A. (1985). Language and cognitive processes from a developmental perspective. Language & Cognitive Processes, 1(1), 61–85. doi:10.1080/01690968508402071.

    Article  Google Scholar 

  • Kikas, E. (2000). The influence of teaching on students’ explanations and illustrations of the day/night cycle and seasonal changes. European Journal of Psychology of Education, 15(3), 281–295. doi:10.1007/BF03173180.

    Article  Google Scholar 

  • Kikas, E. (2003). Constructing knowledge beyond senses: worlds too big and small to see. In A. Toomela (Ed.), Cultural guidance in the development of the human mind (pp. 211–227). Westport, Connecticut & London: Ablex.

    Google Scholar 

  • Kikas, E. (2006). The effect of verbal and visuo-spatial abilities on the development of knowledge of the earth. Research in Science Education, 3, 269–283. doi:10.1007/s11165-005-9010-5.

    Article  Google Scholar 

  • Kirbulut, Z. D., & Beeth, M. E. (2013). Consistency of students’ ideas across evaporation, condensation, and boiling. Research in Science Education, 43(1), 209–232. doi:10.1007/s11165-011-9264-z.

    Article  Google Scholar 

  • Koponen, I. T., & Huttunen, L. (2013). Concept development in learning physics: the case of electric current and voltage revisited. Science & Education, 22(9), 2227–2254.

    Article  Google Scholar 

  • Lazarowitz, R., & Lieb, C. (2006). Formative assessment pre-test to identify college students’ prior knowledge, misconceptions and learning difficulties in biology. International Journal of Science and Mathematics Education, 4(4), 741–762. doi:10.1007/s10763-005-9024-5.

    Article  Google Scholar 

  • Ministry of Education, (2007). Achievement objectives by learning area. The New Zealand Curriculum, 2007. Retrieved from http://www.nzcurriculum.tki.org.nz/Curriculum-documents

  • Nobes, G., Martin, A. E., & Panagiotaki, G. (2005). The development of scientific knowledge of the earth. British Journal of Developmental Psychology, 23, 47–64. doi:10.1348/026151004x20649.

    Article  Google Scholar 

  • OECD. (2013). PISA 2012 results: what students know and can do—student performance in mathematics, reading and science (Volume I). PISA: OECD Publishing. doi:10.1787/9789264201118-en.

    Google Scholar 

  • Osborne, R. J., & Cosgrove, M. M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825–838. doi:10.1002/tea.3660200905.

    Article  Google Scholar 

  • Özdemir, G., & Clark, D. B. (2007). An overview of conceptual change theories. Eurasia Journal of Mathematics, Science and Technology Education, 3(4), 351–361.

    Google Scholar 

  • Özdemir, G., & Clark, D. (2009). Knowledge structure coherence in Turkish students’ understanding of force. Journal of Research in Science Teaching, 46(5), 570–596. doi:10.1002/tea.20290.

    Article  Google Scholar 

  • Özmen, H. (2004). Some student misconceptions in chemistry: a literature review of chemical bonding. Journal of Science Education and Technology, 13(2), 147–159. doi:10.1023/B:JOST.0000031255.92943.6d.

    Article  Google Scholar 

  • Panagiotaki, G., Nobes, G., & Potton, A. (2009). Mental models and other misconceptions in children’s understanding of the Earth. Journal of Experimental Child Psychology, 104(1), 52–67. doi:10.1016/j.jecp.2008.10.003.

    Article  Google Scholar 

  • Philips, W. C. (1991). Earth science misconceptions. The Science Teacher, 58(2), 21–23.

    Google Scholar 

  • Piaget, J. (1930). The child’s conception of physical causality. London: Kegan Paul.

    Google Scholar 

  • Pintrich, P. R., Marx, R. W., & Boyle, R. A. (1993). Beyond cold conceptual change: the role of motivational beliefs and classroom contextual factors in the process of conceptual change. Review of Educational Research, 63(2), 167–199. doi:10.3102/00346543063002167.

    Article  Google Scholar 

  • Prain, V., Tytler, R., & Peterson, S. (2009). Multiple representation in learning about evaporation. International Journal of Science Education, 31, 787–808. doi:10.1080/09500690701824249.

    Article  Google Scholar 

  • Ravanis, K., Christidou, V., & Hatzinikita, V. (2013). Enhancing conceptual change in preschool children’s representations of light: a sociocognitive approach. Research in Science Education, 43(6), 2257–2276. doi:10.1007/s11165-013-9356-z.

    Article  Google Scholar 

  • Reiner, M., Slotta, J. D., Chi, M. T., & Resnick, L. B. (2000). Naive physics reasoning: a commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1–34. doi:10.1207/S1532690XCI1801_01.

    Article  Google Scholar 

  • Renshaw, P. (1992). The sociocultural theory of teaching and learning: implications for the curriculum in the Australian context. In Annual Conference of the Australian Association for Research in Education. Geelong: Deakin University.

    Google Scholar 

  • Robbins, J. (2003). Moving through understanding rather than to understanding: a sociocultural perspective on young children’s conceptions of the rain. Journal of Australian Research in Early Childhood Education, 10(1), 93–108. doi:10.1007/s11165-005-0092-x.

    Google Scholar 

  • Robbins, J. (2005). ‘Brown paper packages’? A sociocultural perspective on young children’s ideas in science. Research in Science Education, 35(2–3), 151–172. doi:10.1007/s11165-005-0092-x.

    Article  Google Scholar 

  • Saçkes, M., Flevares, L. M., & Trundle, K. C. (2010). Four-to six-year-old children’s conceptions of the mechanism of rainfall. Early Childhood Research Quarterly, 25, 536–546. doi:10.1016/j.ecresq.2010.01.001.

    Article  Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34, 377–398. doi:10.1002/(SICI)1098-2736(199704)34:4<377::AID-TEA7>3.0.CO;2-O.

    Article  Google Scholar 

  • Savinainen, A., & Viiri, J. (2008). The Force Concept Inventory as a measure of students conceptual coherence. International Journal of Science and Mathematics Education, 6, 719–740. doi:10.1007/s10763-007-9103-x.

    Article  Google Scholar 

  • Sinatra, G. M. (2005). The“warming trend” in conceptual change research: the legacy of Paul R. Pintrich. Educational Psychologist, 40, 107–115. doi:10.1207/s15326985ep4002_5.

    Article  Google Scholar 

  • Stepans, J., & Kuehn, C. (1985). What research says: children’s conceptions of weather. Science and Children, 23(1), 44–47.

    Google Scholar 

  • Straatemeier, M., van der Maas, H. L. J., & Jansen, B. R. J. (2008). Children’s knowledge of the Earth: a new methodological and statistical approach. Journal of Experimental Child Psychology, 100, 276–296. doi:10.1016/j.jecp.

    Article  Google Scholar 

  • Teaching and Learning International Survey. (2009). Retrieved from Organization for Economic Co-operation and Development website: http://www.oecd.org/edu/talis/firstresults

  • Toomela, A. (2003). Development of symbol meaning and the emergence of the semiotically mediated mind. In A. Toomela (Ed.), Cultural guidance in the development of the human mind (pp. 163–209). Westport: Ablex Publishing.

    Google Scholar 

  • Treagust, D. F., & Duit, R. (2008). Conceptual change: a discussion of theoretical, methodological and practical challenges for science education. Cultural Studies of Science Education, 3(2), 297–328. doi:10.1007/s11422-008-9090-4.

    Article  Google Scholar 

  • Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: dimensions of conceptual progression. International Journal of Science Education, 22, 447–467. doi:10.1080/095006900289723.

    Article  Google Scholar 

  • Uibu, K., & Kikas, E. (2008). The roles of a primary school teacher in the information society. Scandinavian Journal of Educational Research, 52(5), 459–480.

    Article  Google Scholar 

  • Uibu, K., Kikas, E., & Tropp, K. (2010). Instructional approaches: differences between kindergarten and primary school teachers. Compare - A Journal of International and Comparative Education, 41(1), 91–111.

    Article  Google Scholar 

  • Vabariigi Valitsus (2002/2010). Põhikooli ja gümnaasiumi riiklik õppekava. [National Curriculum for Basic Schools and Upper Secondary Schools], Riigi Teataja I 2010, 6, 21. Retrieved from https://www.riigiteataja.ee/akt/13276017

  • Villarroel, J. D., & Ros, I. (2013). Young children’s conceptions of rainfall: a study of their oral and pictorial explanations. International Education Studies, 6(8), p1.

    Article  Google Scholar 

  • Vinisha, K., & Ramadas, J. (2013). Visual representations of the water cycle in science textbooks. Contemporary Education Dialogue, 10(1), 7–36. doi:10.1177/0973184912465157.

    Article  Google Scholar 

  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45–69. doi:10.1016/0959-4752(94)90018-3.

    Article  Google Scholar 

  • Vosniadou, S. (2002). On the nature of naïve physics. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: issues in theory and practice (pp. 28–60). Springer: Netherlands.

    Google Scholar 

  • Vosniadou, S. (2007). Conceptual change and education. Human Development, 50(1), 47–54. doi:10.1159/000097684.

    Article  Google Scholar 

  • Vosniadou, S. (2008). Bridging culture with cognition: a commentary on “culturing conceptions: from first principles”. Cultural Studies of Science Education, 3(2), 277–282. doi:10.1007/s11422-008-9098-9.

    Article  Google Scholar 

  • Vosniadou, S. (2014). Examining cognitive development from a conceptual change point of view: the framework theory approach. The European Journal of Developmental Psychology, 11(6), 645–661. doi:10.1080/17405629.2014.921153.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: a study of conceptual change in childhood. Cognitive Psychology, 24, 535–585. doi:10.1016/0010-0285(92)90018-W.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123–183. doi:10.1016/0364-0213(94)90022-1.

    Article  Google Scholar 

  • Vosniadou, S., & Ioannides, C. (1998). From conceptual development to science education: a psychological point of view. International Journal of Science Education, 20(10), 1213–1230.

    Article  Google Scholar 

  • Vosniadou, S., & Skopeliti, I. (2014). Conceptual change from the framework theory side of the fence. Science & Education, 23(7), 1427–1445. doi:10.1007/s11191-013-9640-3.

    Article  Google Scholar 

  • Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2004). Modes of knowing and ways of reasoning in elementary astronomy. Cognitive Development, 19(2), 203–222. doi:10.1016/j.cogdev.2003.12.002.

    Article  Google Scholar 

  • Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2005). Reconsidering the role of artifacts in reasoning: children’s understanding of the globe as a model of the earth. Learning and Instruction, 15(4), 333–351. doi:10.1016/j.learninstruc.2005.07.004.

    Article  Google Scholar 

  • Vygotsky, L. S. (1986). Thought and language. Cambridge: MIT press.

    Google Scholar 

Download references

Acknowledgments

The authors thank Sigrid Kruus for the help with data collection and scoring. This study was supported by an institutional research funding IUT (3-3) of the Estonian Ministry of Education and Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elina Malleus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malleus, E., Kikas, E. & Marken, T. Kindergarten and Primary School Children’s Everyday, Synthetic, and Scientific Concepts of Clouds and Rainfall. Res Sci Educ 47, 539–558 (2017). https://doi.org/10.1007/s11165-016-9516-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-016-9516-z

Keywords

Navigation