Research in Science Education

, Volume 45, Issue 5, pp 691–715 | Cite as

Students’ Energy Concepts at the Transition Between Primary and Secondary School

  • Sebastian T. Opitz
  • Ute Harms
  • Knut Neumann
  • Kristin Kowalzik
  • Arne Frank


Energy is considered both a core idea and a crosscutting concept in science education. A thorough understanding of the energy concept is thought to help students learn about other (related) concepts within and across science subjects, thereby fostering scientific literacy. This study investigates students’ progression in understanding the energy concept in biological contexts at the transition from primary to lower secondary school by employing a quantitative, cross-sectional study in grades 3–6 (N = 540) using complex multiple-choice items. Based on a model developed in a previous study, energy concepts were assessed along four aspects of energy: (1) forms and sources of energy, (2) transfer and transformation, (3) degradation and dissipation, and (4) energy conservation. Two parallel test forms (A and B) indicated energy concept scores to increase significantly by a factor of 2.3 (A)/1.7 (B) from grade 3 to grade 6. Students were observed to progress in their understanding of all four aspects of the concept and scored highest on items for energy forms. The lowest scores and the smallest gain across grades were found for energy conservation. Based on our results, we argue that despite numerous learning opportunities, students lack a more integrated understanding of energy at this stage, underlining the requirement of a more explicit approach to teaching energy to young learners. Likewise, more interdisciplinary links for energy learning between relevant contexts in each science discipline may enable older students to more efficiently use energy as a tool and crosscutting concept with which to analyze complex content.


Energy Biology Core idea Crosscutting concept Learning progression Interdisciplinary learning 



The authors acknowledge funding by the federal state of Hamburg and the convenient access to the field as a part of the research program accompanying the “Hamburger Schulversuch alles> > könner”. The support of the participating schools, teachers, and students was essential for this study. We want to thank Maika Drews and Annetha Pries for helping with data sampling. For statistical and methodological advice, we are grateful to Michael Leucht, Martin Senkbeil, Gabriel Nagy, and Olaf Köller from IPN, Kiel. Finally, we thank two anonymous reviewers for their critical, yet supportive comments that made many points in this article much clearer.

Supplementary material

11165_2014_9444_MOESM1_ESM.pdf (830 kb)
Online resource 1 Items employed by this study for testing the energy concept in biological contexts (PDF 829 kb)
11165_2014_9444_MOESM2_ESM.pdf (254 kb)
Online resource 2 Item parameters for grades 3–6 (PDF 253 kb)


  1. AAAS (American Association for the Advancement of Science). (2007). Getting assessment right. 2061 Today, 17(1), 1–7.Google Scholar
  2. Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.Google Scholar
  3. Barak, J., Gorodetsky, M., & Chipman, D. (1997). Understanding of energy in biology and vitalistic conceptions. International Journal of Science Education, 19(1), 21–30.CrossRefGoogle Scholar
  4. Bayrhuber C v,Hauber, W., & Kull, U. (2010). Linder Biologie. Gesamtband. (23 ed.). Braunschweig: Schroedel. Linder biology school book for upper high schoolGoogle Scholar
  5. Boyes, E., & Stanisstreet, M. (1990). Pupils’ ideas concerning energy sources. International Journal of Science Education, 12(5), 513–529.CrossRefGoogle Scholar
  6. Bransford, J. D., Brown, A. L., & Cocking, R. R. (1999). How people learn: brain, mind, experience and school. Washington: National Academy Press.Google Scholar
  7. Burger, J. (2001). Schülervorstellungen zu “Energie im biologischen Kontext”-Ermittlungen, Analysen und Schlussfolgerungen. Bielefeld: Bielefeld university, dissertation. [Student conceptions concerning energy in biological contexts-research, analysis and conclusions] . Accessed 16 January 2012.
  8. Chabalengula, V., Sanders, M., & Mumba, F. (2011). Diagnosing students’ understanding of energy and its related concepts in biological contexts. International Journal of Science and Mathematics Education, 10(2), 241–266.CrossRefGoogle Scholar
  9. Chen, B., Eisenkraft, A., Fortus, D., Krajcik, J., Neumann, K., Nordine, J., & Scheff, A. (Eds.). (2014). Teaching and learning of energy in K–12 education. New York: Springer.Google Scholar
  10. Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica, 26(3), 591–605.CrossRefGoogle Scholar
  11. Constantinou, C. P., & Papadouris, N. (2012). Teaching and learning about energy in middle school: an argument for an epistemic approach. Studies in Science Education, 48(2), 161–186.CrossRefGoogle Scholar
  12. ACARA (Australian Curriculum, Assessment and Reporting Authority) (2013). The Australian Curriculum–Science. . Accessed 31 October 2013.
  13. Dawson-Tunik, T. L. (2006). Stage-like patterns in the development of conceptions of energy. In X. F. Liu & W. Boone (Eds.), Applications of Rasch measurement in science education (pp. 111–136). Maple Grove, Minnesota: JAM Press.Google Scholar
  14. Deci, E. L., & Ryan, R. M. (2012). Intrinsic Motivation Inventory (IMI). Accessed 27 June 2012.
  15. DfE (Department for Education) (2013). Science programs of study: key stage 3-National curriculum in England. . Accessed 31 October 2013.
  16. Doménech, J., Gil-Pérez, D., Gras-Martí, A., Guisasola, J., Martínez-Torregrosa, J., Salinas, J., et al. (2007). Teaching of energy issues: a debate proposal for a global reorientation. Science & Education, 16(1), 43–64.CrossRefGoogle Scholar
  17. Driver, R., & Warrington, L. (1985). Students’ use of the principle of energy conservation in problem situations. Physics Education, 20(4), 171.CrossRefGoogle Scholar
  18. Duit, R. (1984). Learning the energy concept in school—empirical results from the Philippines and West Germany. Physics Education, 19(2), 59–66.CrossRefGoogle Scholar
  19. Duit, R., & Kesidou, S. (1988). Students’ understanding of basic ideas of the second law of thermodynamics. Research in Science Education, 18(1), 186–195.CrossRefGoogle Scholar
  20. Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). Taking science to school: learning and teaching science in grades K-8. Washington: The National Academies Press.Google Scholar
  21. EDK (Schweizerische Konferenz der kantonalen Erziehungsdirektoren) (2011). Grundkompetenzen für die Naturwissenschaften-Nationale Bildungsstandards-Freigegeben von der EDK-Plenarversammlung am 16.Juni 2011 . Accessed 31 October 2013.
  22. Field, A. (2009). Discovering statistics using SPSS (3rd ed.). London: Sage Publications.Google Scholar
  23. Finegold, M., & Trumper, R. (1989). Categorizing pupils’ explanatory frameworks in energy as a means to the development of a teaching approach. Research in Science Education, 19(1), 97–110.CrossRefGoogle Scholar
  24. Fleiss, J. L., Cohen, J., & Everitt, B. S. (1969). Large sample standard errors of kappa and weighted kappa. Psychological Bulletin, 72(5), 323–327.CrossRefGoogle Scholar
  25. Forde, T. (2003). “When I am watching television I am not using any energy”—an empirical study of junior science students’ intuitive concepts of energy. Irish Educational Studies, 22(3), 71–89.CrossRefGoogle Scholar
  26. Gayford, C. G. (1986). Some aspects of the problems of teaching about energy in school biology. European Journal of Science Education, 8(4), 443–450.CrossRefGoogle Scholar
  27. Goldring, H., & Osborne, J. (1994). Students’ difficulties with energy and related concepts. Physics Education, 29(1), 26.CrossRefGoogle Scholar
  28. Gottlieb, M., G. Haala, et al. (2010). Natura 1. Biologie für Gymnasien-Nordrhein-Westphalen G8. Stuttgart/Leipzig: Klett. [Biology textbook for grammar schools in North Rhine-Westphalia, 8 year-curriculum]Google Scholar
  29. Heller, K. A., & Perleth, C. (2000). KFT 4-12 + R-Kognitive Fähigkeiten Test für 4.-12. Klassen, Revision. Göttingen: Hogrefe. [Test of cognitive abilities in grades 4–12, revised]Google Scholar
  30. Herrmann-Abell, C. F., & DeBoer, G. E. (2011). Investigating Students’ Understanding of Energy Transformation, Energy Transfer, and Conservation of Energy Using Standards-Based Assessment Items. Paper presented at the 2011 National Association for Research in Science Teaching (NARST), Orlando, Florida, 3–6 April 2011. Accessed 19 June 2014.
  31. Hirca, N. C., & Akdeniz, F. (2008). Investigating grade 8 students’ conceptions of ‘energy’ and related concepts. Journal of Turkish Science Education, 5(1), 75–87.Google Scholar
  32. Holden, C. C., & Barrow, L. H. (1984). Validation of the test of energy concepts and values for high school. Journal of Research in Science Teaching, 21(2), 187–196.CrossRefGoogle Scholar
  33. KMK (Sekretariat der ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland) (2005a). Bildungsstandards im Fach Physik für den Mittleren Schulabschluss Beschluss vom 16.12. 2004. München: Luchterhand. [German national education standards concerning physics for middle school graduation. Decision of December 16th 2004]Google Scholar
  34. KMK (Sekretariat der ständigen Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland) (2005b). Bildungsstandards im Fach Biologie für den Mittleren Schulabschluss-Beschluss vom16.12.2004. München: Luchterhand. [German national education standards concerning biology for middle school graduation. Decision of December 16th 2004]Google Scholar
  35. Jin, H., & Anderson, C. W. (2012). A learning progression for energy in socio-ecological systems. Journal of Research in Science Teaching, 49(9), 1149–1180.CrossRefGoogle Scholar
  36. Jütte, M., & Kähler, H. (2008). Biologie heute entdecken 1. Ein Lehr-und Arbeitsbuch. Schleswig-Holstein. Schroedel, Braunschweig. [Biology discovered today 1: A text- and workbook; for lower secondary school]Google Scholar
  37. Kirk, R. E. (1996). Practical significance: a concept whose time has come. Educational and Psychological Measurement, 56(5), 746–759. doi: 10.1177/0013164496056005002.CrossRefGoogle Scholar
  38. Kraft, D. (2009). Pusteblume. Das Arbeitsbuch 3 und 4. Braunschweig: Schroedel. [‘Dandelion’. Workbook for lower science education in grades 3 and 4]Google Scholar
  39. Krajcik, J. S., Sutherland, L. A., Drago, K., & Merritt, J. (2012). The promise and value of learning progression research. In S. Bernholt, K. Neumann, & P. Nentwig (Eds.), Making it tangible: learning outcomes in science education (pp. 261–283). Münster: Waxmann.Google Scholar
  40. Kurnaz, M. A., & Sağlam Arslan, A. (2011). A thematic review of some studies investigating students’ alternative conceptions about energy. Eurasian Journal of Chemistry and Physics Education, 3(1), 51–74.Google Scholar
  41. Lacy, S., Tobin, R., Wiser, M., & Crissman, S. (2014). Looking through the energy lens: a proposed learning progression for energy in grades 3–5. In B. Chen, A. Eisenkraft, D. Fortus, J. Krajcik, K. Neumann, J. Nordine, & A. Scheff (Eds.), Teaching and learning of energy in K-12 education. New York: Springer.Google Scholar
  42. Lancor, R. A. (2012). Using student-generated analogies to investigate conceptions of energy: a multidisciplinary study. International Journal of Science Education, doi: 10.1080/09500693.2012.714512Google Scholar
  43. Lead States, N. G. S. S. (2013). Next generation science standards: for states, by states. Washington: The National Academies Press.Google Scholar
  44. Lee, H. B. (2008). Using the chow test to analyze regression discontinuities. Tutorials in Quantitative Methods for Psychology, 4(2), 46–50.Google Scholar
  45. Lee, H.-S., & Liu, O. L. (2009). Assessing learning progression of energy concepts across middle school grades: the knowledge integration perspective. Science Education, 94(4), 665–688.CrossRefGoogle Scholar
  46. Lin, C.-Y., & Hu, R. (2003). Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis, and respiration. International Journal of Science Education, 25(12), 1529–1544.CrossRefGoogle Scholar
  47. Liu, X., & McKeough, A. (2005). Developmental growth in students’ concept of energy: analysis of selected items from the TIMSS database. Journal of Research in Science Teaching, 42(5), 493–517.CrossRefGoogle Scholar
  48. Liu, X., & Ruiz, M. E. (2008). Using data mining to predict K–12 students’ performance on large-scale assessment items related to energy. Journal of Research in Science Teaching, 45(5), 554–573.CrossRefGoogle Scholar
  49. Liu, X., & Tang, L. (2004). The progression of students’ conceptions of energy: a cross-grade, cross-cultural study. Canadian Journal of Science, Mathematics, and Technology Education, 4(1), 43–57.CrossRefGoogle Scholar
  50. Luyten, H. (2006). An empirical assessment of the absolute effect of schooling: regression-discontinuity applied to TIMSS-95. Oxford Review of Education, 32(3), 397–429.CrossRefGoogle Scholar
  51. Meier, R. (2007a). Mobile 3. Sachunterricht Nord. Braunschweig: Westermann [Work-and textbook for grade 3 science education].Google Scholar
  52. Meier, R. (2007b). Mobile 4. Sachunterricht Nord. Braunschweig: Westermann [Work-and textbook for grade 4 science education].Google Scholar
  53. Messick, S. (1995). Validity of psychological assessment: validation of inferences from persons’ responses and performances as scientific inquiry into score meaning. American Psychologist, 50(9), 741–749.CrossRefGoogle Scholar
  54. Millar, R. (2005). Teaching about Energy. University of York: Department of Educational Studies. ISBN: 1-85342-626-1. Accessed 19 June 2014.
  55. Neumann, K., Viering, T., Boone, W. J., & Fischer, H. E. (2013). Towards a learning progression of energy. Journal of Research in Science Teaching, 50(2), 162–188.CrossRefGoogle Scholar
  56. Nordine, J., Krajcik, J., & Fortus, D. (2010). Transforming energy instruction in middle school to support integrated understanding and future learning. Science Education, 95(4), 670–699.CrossRefGoogle Scholar
  57. Novak, J. D. (2005). Results and implications of a 12-year longitudinal study of science concept learning. Research in Science Education, 35(1), 23–40.CrossRefGoogle Scholar
  58. NRC (National Research Council and Committee on Conceptual Framework for the New K-12 Science Education Standards). (2012). A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington: The National Academies Press.Google Scholar
  59. Pearson, E. S., & Hartley, H. O. (1954). The distribution of the ratio, in a single normal sample, of range to standard deviation. Biometrika, 41, 491.CrossRefGoogle Scholar
  60. Remmers, H. H., Shock, N. W., & Kelly, E. L. (1927). An empirical study of the validity of the spearman-brown formula as applied to the Purdue rating scale. Journal of Educational Psychology, 18(3), 187–195.CrossRefGoogle Scholar
  61. Retelsdorf, J., & Becker, M. (2012). “Reading development in a tracked school system: a longitudinal study over 3 years using propensity score matching.”. British Journal of Educational Psychology, 82(4), 647–671.CrossRefGoogle Scholar
  62. Shultz, T. R., & Coddington, M. (1981). Development of the concepts of energy conservation and entropy. Journal of Experimental Child Psychology, 31(1), 131–153.CrossRefGoogle Scholar
  63. Solbes, J., Guisasola, J., & Tarín, F. (2009). Teaching energy conservation as a unifying principle in physics. Journal of Science Education and Technology, 18(3), 265–274.CrossRefGoogle Scholar
  64. Solomon, J. (1983). Learning about energy: how pupils think in two domains. European Journal of Science Education, 5(1), 49–59.CrossRefGoogle Scholar
  65. Tatar, E., & Oktay, M. (2007). Students’ misunderstanding about the energy conservation principle: a general view to studies in literature. International Journal of Environmental & Science Education, 2(3), 79–81.Google Scholar
  66. Trumper, R. (1990). Being constructive: an alternative approach to the teaching of the energy concept—part one. International Journal of Science Education, 12(4), 343–354.CrossRefGoogle Scholar
  67. Trumper, R. (1993). Children’s energy concepts: a cross-age study. International Journal of Science Education, 15(2), 139–148.CrossRefGoogle Scholar
  68. Trumper, R. (1997a). The need for change in elementary school teacher training: the case of the energy concept as an example. Educational Research, 39(2), 157–174.CrossRefGoogle Scholar
  69. Trumper, R. (1997b). A survey of conceptions of energy of Israeli pre-service high school biology teachers. International Journal of Science Education, 19(1), 31–46.CrossRefGoogle Scholar
  70. Trumper, R., Raviolo, A., & Shnersch, A. (2000). A cross-cultural survey of conceptions of energy among elementary school teachers in training empirical results from Israel and Argentina. Teaching and Teacher Education, 16(7), 697.CrossRefGoogle Scholar
  71. Van Hook, S., & Huziak-Clark, T. (2008). Lift, squeeze, stretch, and twist: research-based inquiry physics experiences (RIPE) of energy for kindergartners. Journal of Elementary Science Education, 20(3), 1–16.CrossRefGoogle Scholar
  72. Walter, O., Senkbeil, M., Rost, J., Carstensen, C. H., & Prenzel, M. (2006). Die entwicklung der naturwissenschaftlichen kompetenz von der neunten bis zur zehnten klassenstufe: Deskriptive befunde. In M. Prenzel, J. Baumert, W. Blum, R. Lehmann, D. Leutner, M. Neubrand, R. Pekrun, J. Rost, & U. Schiefele (Eds.), PISA 2003: Untersuchungen zur Kompetenzentwicklung im Verlauf eines Schuljahres (pp. 87–118). Münster: Waxmann [The development of scientific competence from grade 9 to grade 10: descriptive findings].Google Scholar
  73. Wandersee, J., Mintzes, J., & Novak, J. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning. New York: Macmillan.Google Scholar
  74. Warren, J. W. (1982). The nature of energy. European Journal of Science Education, 4(3), 295–297.CrossRefGoogle Scholar
  75. Warren, J. W. (1983). Energy and its carrieres: a critical analysis. Physics Education, 18(5), 209–212.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sebastian T. Opitz
    • 1
  • Ute Harms
    • 1
  • Knut Neumann
    • 1
  • Kristin Kowalzik
    • 1
  • Arne Frank
    • 1
  1. 1.Kiel UniversityIPN - Leibniz Institute for Science and Mathematics EducationKielGermany

Personalised recommendations