Skip to main content
Log in

Assessment of Preschooler’s Scientific Reasoning in Adult–Child Interactions: What Is the Optimal Context?

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

In educational settings, continuous assessment of the child’s level of understanding is necessary to effectively utilize the principles of scaffolding and to create contexts that can advance the scientific reasoning of the child. In this article, we argue that a child’s performance is a dynamic notion that is created by all elements in an interaction, including the task. Therefore, we studied preschoolers’ levels of scientific reasoning varying different properties of the assessment context. Young children were interviewed about four scientific tasks using one out of four different protocols (varying in the degree of flexibility and adaptiveness) by an adult. In the first study, different task contents resulted in different performance levels. The second study indicated that the most structured protocol elicited the highest maximum level of reasoning in children and the highest percentage of correct predictions. The third study showed differences between the protocols in the adult’s verbal behavior. Adaptation in verbal behavior to different children by the adult did not result in higher scientific understanding by the children, whereas a higher degree of task structure did. Combined, the studies emphasize the importance of context, which has implications for assessment and teaching situations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Callanan, M. A., & Jipson, J. L. (2001). In K. Crowley, C. D. Schunn, & T. Okada (Eds.), Explanatory conversations and young children’s developing scientific literacy (pp. 21–49). Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Chak, A. (2010). Adult response to children’s exploratory behaviours: an exploratory study. Early Child Development and Care, 180(5), 633–646. doi:10.1080/03004430802181965.

    Article  Google Scholar 

  • Chemero, A. (2003). An outline of a theory of affordances. Ecological Psychology, 15(2), 181–195. doi:10.1207/S15326969ECO1502_5.

    Article  Google Scholar 

  • Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (2007). In R. A. Duschl, H. A. Schweingruber, & A. W. Shouse (Eds.), Taking science to school: learning and teaching science in grades K–8. Washington, DC: National Academies.

    Google Scholar 

  • Epstein, I., Stevens, B., McKeever, P., Baruchel, S., & Jones, H. (2008). Using puppetry to elicit children’s talk for research. Nursing Inquiry, 15(1), 49–56. doi:10.1111/j.1440-1800.2008.00395.x.

    Article  Google Scholar 

  • Eshach, H., & Fried, M. N. (2005). Should science be taught in early childhood? Journal of Science Education and Technology, 14(3), 315–336. doi:10.1007/s10956-005-7198-9.

    Article  Google Scholar 

  • Fischer, K. W. (1980). A theory of cognitive development: the control and construction of hierarchies of skills. Psychological Review, 87(6), 477–531. doi:10.1037/0033-295X.87.6.477.

    Article  Google Scholar 

  • Fischer, K. W., & Bidell, T. R. (2006). In R. M. Lerner & W. Damon (Eds.), Dynamic development of action and thought (pp. 313–399). Hoboken: Wiley.

    Google Scholar 

  • Fischer, K. W., Bullock, D., Rotenberg, E. J., & Raya, P. (1993). The dynamics of competence: How context contributes directly to skill. In R. H. Wozniak & K. W. Fischer (Eds.), Development in context: acting and thinking in specific environments, The Jean Piaget symposium series (pp. 93–117). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • French, L. (2004). Science as the center of a coherent, integrated early childhood curriculum. Early Childhood Research Quarterly, 19(1), 138–149. doi:10.1016/j.ecresq.2004.01.004.

    Article  Google Scholar 

  • Gelman, R., & Brenneman, K. (2004). Science learning pathways for young children. Early Childhood Research Quarterly, 19(1), 150–158. doi:10.1016/j.ecresq.2004.01.009.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception (p. 332). Boston: Houghton, Mifflin and Company.

    Google Scholar 

  • Gibson, E. J. (1988). Exploratory behavior in the development of perceiving, acting, and the acquiring of knowledge. Annual Review of Psychology, 39(1), 1–42. doi:10.1146/annurev.ps.39.020188.000245.

    Article  Google Scholar 

  • Good, P.I. (1999). Resampling methods: a practical guide to data analysis. Boston: Birkhauser.

  • Goldin-Meadow, S., Alibali, M. W., & Church, R. B. (1993). Transitions in concept acquisition: using the hand to read the mind. Psychological Review, 100(2), 279–297. doi:10.1037//0033-295X.100.2.279.

    Article  Google Scholar 

  • Granott, N., Fischer, K. W., & Parziale, J. (2002). Bridging to the unknown: a transition mechanism in learning and development. In N. Grannot & J. Parziale (Eds.), Microdevelopment: transition processes in development and learning (pp. 131–156). Cambridge: Cambridge University Press. doi:10.1017/CBO9780511489709.006.

    Chapter  Google Scholar 

  • Hardy, I., Jonen, A., Möller, K., & Stern, E. (2006). Effects of instructional support within constructivist learning environments for elementary school students’ understanding of “Floating and sinking”. Journal of Educational Psychology, 98(2), 307–326. doi:10.1037/0022-0663.98.2.307.

    Article  Google Scholar 

  • Havu-Nuutinen, S. (2005). Examining young children’s conceptual change process in floating and sinking from a social constructivist perspective. International Journal of Science Education, 27(3), 259–279. doi:10.1080/0950069042000243736.

    Article  Google Scholar 

  • Henderson, B. (1984). Parents and exploration: the effect of context on individual differences in exploratory behavior. Child Development, 55(4), 1237. doi:10.2307/1129993.

    Article  Google Scholar 

  • Henderson, B., & Moore, S. G. (1980). Children’s responses to objects differing in novelty in relation to level of curiosity and adult behavior. Child Development, 51(2), 457. doi:10.2307/1129279.

    Article  Google Scholar 

  • Hoogsteder, M., Maier, R., & Elbers, E. (1996). The architecture of adult–child interaction. Joint problem solving and the structure of cooperation. Learning and Instruction, 6(4), 345–358. doi:10.1016/S0959-4752(96)00020-5.

    Article  Google Scholar 

  • Hsin, C.-T., & Wu, H.-K. (2011). Using scaffolding strategies to promote young children’s scientific understandings of floating and sinking. Journal of Science Education and Technology, 20, 656–666. doi:10.1007/s10956-011-9310-7.

    Google Scholar 

  • Kloos, H., Fisher, A., & Van Orden, G. C. (2010). Situated naïve physics: task constraints decide what children know about density. Journal of Experimental Psychology. General, 139(4), 625–637. doi:10.1037/a0020977.

    Article  Google Scholar 

  • Lave, J. (1988). Cognition in practice: mind, mathematics, and culture in everyday life (Vol. 3). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mantzicopoulos, P., Patrick, H., & Samarapungavan, A. (2008). Young children’s motivational beliefs about learning science. Early Childhood Research Quarterly, 23(3), 378–394. doi:10.1016/j.ecresq.2008.04.001.

    Article  Google Scholar 

  • Mascolo, M. (2005). Change processes in development: the concept of coactive scaffolding. New Ideas in Psychology, 23(3), 185–196. doi:10.1016/j.newideapsych.2006.05.002.

    Article  Google Scholar 

  • Mascolo, M., & Fischer, K. W. (2010). The dynamic development of thinking, feeling and acting over the lifespan. In W. F. Overton (Ed.), Biology, cognition and methods across the life-span. Volume 1 of the Handbook of life-span development (vol. 45). Hoboken: Wiley.

    Google Scholar 

  • Meindertsma, H. B., Van Dijk, M. W. G., Steenbeek, H. W. & Van Geert, P.L.C. (2012). Application of Skill Theory to compare scientific reasoning of young children in different tasks. Netherlands Journal of Psychology, 67, 9–19.

    Google Scholar 

  • Nunkoosing, K. (2005). The problems with interviews. Qualitative Health Research, 15(5), 698–706. doi:10.1177/1049732304273903.

    Article  Google Scholar 

  • Philips, S., & Tolmie, A. (2007). Children’s performance on and understanding of the balance scale problem: the effects of parental support. Infant and Child Development, 16(1), 95–117. doi:10.1002/icd.504.

    Article  Google Scholar 

  • Piaget, J. (1930). The child’s conception of physical causality. New York: Harcourt, Brace & Company.

    Google Scholar 

  • Pine, K. J., Lufkin, N., & Messer, D. (2004). More gestures than answers: children learning about balance. Developmental Psychology, 40(6), 1059–1067. Retrieved from http://www.apa.org/journals;http://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ684676&loginpage=Login.asp&site=ehost-live&scope=site.

    Google Scholar 

  • Pine, K. J., Lufkin, N., Kirk, E., & Messer, D. (2007). A microgenetic analysis of the relationship between speech and gesture in children: evidence for semantic and temporal asynchrony. Language and Cognitive Processes, 22(2), 234–246. doi:10.1080/01690960600630881.

    Article  Google Scholar 

  • Ramsey, J., & Fowler, M. (2004). “What do you notice?” Using posters containing questions and general instructions to guide preschoolers’ science and mathematics learning. Early Child Development and Care, 174(1), 31–45. doi:10.1080/0300443032000153471.

    Article  Google Scholar 

  • Rappolt-Schlichtmann, G., Tenenbaum, H. R., Koepke, M. F., & Fischer, K. W. (2007). Transient and robust knowledge: contextual support and the dynamics of children’s reasoning about density. Mind, Brain, and Education, 1(2), 98–108. doi:10.1111/j.1751-228X.2007.00010.x.

    Article  Google Scholar 

  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: a renewed pedagogy for the future of Europe (EUR 22845). Economy and Society. Retrieved from http://ec.europa.eu/research/science-society/document_library/pdf_06/report-rocard-on-science-education_en.pdf.

  • Ruff, H. A. (1984). Infants’ manipulative exploration of objects: effects of age and object characteristics. Developmental Psychology, 20(1), 9–20. doi:10.1037/0012-1649.20.1.9.

    Article  Google Scholar 

  • Ruiz-Primo, M. A., & Furtak, E. M. (2007). Exploring teachers’ informal formative assessment practices and students’ understanding in the context of scientific inquiry. Journal of Research in Science Teaching, 44(1), 57–84. doi:10.1002/tea.20163.

    Article  Google Scholar 

  • Salonen, P., Lepola, J., & Vauras, M. (2007). Scaffolding interaction in parent–child dyads: multimodal analysis of parental scaffolding with task and non-task oriented children. European Journal of Psychology of Education, 22(1), 77–96. doi:10.1007/BF03173690.

    Article  Google Scholar 

  • Schwartz, M., & Fischer, K. W. (2004). Building general knowledge and skill: cognition and microdevelopment in science learning. In A. Demetriou & A. Raftopoulos (Eds.), Cognitive developmental change. Theories, models and measurement (pp. 157–185). New York: Cambridge University Press.

    Google Scholar 

  • Shaw, R. E., Turvey, M. T., & Mace, W. M. (1982). Ecological psychology: the consequence of a commitment to realism. In W. Weimer & D. Palermo (Eds.), Cognition and the symbolic processes (2nd ed., Vol. 2, pp. 159–226). Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Siegler, R. S., & Alibali, M. W. (2005). Children’s thinking (4th ed.). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Siegler, R. S., & Chen, Z. (1998). Developmental differences in rule learning: a microgenetic analysis. Cognitive Psychology, 36(3), 273–310. doi:10.1006/cogp.1998.0686.

    Article  Google Scholar 

  • Smith, L. B., & Thelen, E. (2003). Development as a dynamic system. Trends in Cognitive Sciences, 7(8), 343–348. doi:10.1016/S1364-6613(03)00156-6.

    Article  Google Scholar 

  • Steenbeek, H. W., Van Geert, P. L. C., & Van Dijk, M. W. G. (2011). The dynamics of children’s science and technology talents: a conceptual framework for early science education. Netherlands Journal of Psychology, 66(3), 96–109.

    Google Scholar 

  • Thelen, E. (1992). Development as a dynamic system. Current Directions in Psychological Science, 1(6), 189–193. doi:10.1111/1467-8721.ep10770402.

    Article  Google Scholar 

  • Thelen, E., & Smith, L. B. (1994). A dynamic systems approach to the development of cognition and action. Cambridge: MIT.

    Google Scholar 

  • Tytler, R., & Peterson, S. (2003). Tracing young children’s scientific reasoning. Research in Science Education, 33(4), 433–465. doi:10.1023/B:RISE.0000005250.04426.67.

    Article  Google Scholar 

  • Tytler, R., & Peterson, S. (2004). From try it and see to strategic exploration: characterizing young children’s scientific reasoning. Journal of Research in Science Teaching, 41(1), 94–118. doi:10.1002/tea.10126.

    Article  Google Scholar 

  • Van de Pol, J., Volman, M., & Beishuizen, J. (2010). Scaffolding in teacher–student interaction: a decade of research. Educational Psychology Review, 22(3), 271–296. doi:10.1007/s10648-010-9127-6.

    Article  Google Scholar 

  • Van Dijk, M., & Van Geert, P. (2007). Wobbles, humps and sudden jumps: a case study of continuity, discontinuity and variability in early language development. Infant and Child Development, 16(1), 7–33. doi:10.1002/icd.506.

    Article  Google Scholar 

  • Van Geert, P. L. C., & Steenbeek, H. W. (2005). The dynamics of scaffolding. New Ideas in Psychology, 23(3), 115–128. doi:10.1016/j.newideapsych.2006.05.003.

    Article  Google Scholar 

  • Wechsler, D. (2002). Wechsler intelligence scale for children (3rd ed.). Lisse: Harcourt Test. Nederlandse Versie.

    Google Scholar 

  • Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89–100. doi:10.1111/j.1469-7610.1976.tb00381.x.

    Article  Google Scholar 

  • Zimmerman, C. (2000). The development of scientific reasoning skills. Developmental Review, 20(1), 99–149. doi:10.1006/drev.1999.0497.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi B. Meindertsma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meindertsma, H.B., van Dijk, M.W.G., Steenbeek, H.W. et al. Assessment of Preschooler’s Scientific Reasoning in Adult–Child Interactions: What Is the Optimal Context?. Res Sci Educ 44, 215–237 (2014). https://doi.org/10.1007/s11165-013-9380-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-013-9380-z

Keywords

Navigation