Skip to main content
Log in

Enhancing Conceptual Change in Preschool Children’s Representations of Light: A Sociocognitive Approach

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the effect of a sociocognitive teaching strategy on young children’s understanding of light. It explores their understanding of the concept of light as an entity that is transmitted independently of the light source and the final receiver. The study was conducted in three phases: pretest, teaching intervention, and post-tests. The sample consisted of 170 preschool children who were assigned to two groups. The children in the first group participated in activities which adopted a sociocognitive approach. In the context of this approach, a familiar metaphor was introduced in order to facilitate children to construct a “precursor model” about light. The children in the second group participated in activities with the same teaching objectives, but adopting an empiricist perspective. Statistical analysis using the Mann–Whitney U test indicated that the cognitive progress of the sociocognitive group was more significant than the progress of the empiricist group. This provides evidence for the effect of the sociocognitive strategy on enhancing children in constructing a “precursor model” for the concept of light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Black, M. (1979). More about metaphor. In A. Ortony (Ed.), Metaphor and thought (pp. 19–43). New York: Cambridge University Press.

    Google Scholar 

  • Canedo-Ibarra, S. P., Castelló-Escandell, J., García-Wehrle, P., & Morales-Blake, A. R. (2010). Precursor models construction at preschool education: an approach to improve scientific education in the classroom. Review of Science, Mathematics & ICT Education, 4(1), 41–76.

    Google Scholar 

  • Christidou, V., & Hatzinikita, V. (2006). Preschool children’s explanations of plant growth and rain formation: a comparative analysis. Research in Science Education, 34(2), 187–210.

    Article  Google Scholar 

  • Christidou, V., Koulaidis, V., & Christidis, T. (1997). Children’s use of metaphors in relation to their mental models: the case of the ozone layer and its depletion. Research in Science Education, 27(3), 541–552.

    Article  Google Scholar 

  • Christidou, V., Kazela, K., Kakana, D., & Valakosta, M. (2009). Teaching magnetic attraction to preschool children: a comparison of different approaches. International Journal of Learning, 16(2), 115–128.

    Google Scholar 

  • Conezio, K., & French, L. (2002). Science in the preschool classroom: capitalizing on children’s fascination with the everyday world to foster language and literacy development. Young Children, 57(5), 12–19.

    Google Scholar 

  • Cornell Way, E. (1991). Knowledge representation and metaphor. Dordrecht: Kluwer.

    Google Scholar 

  • Di Sessa, A., & Sherlin, B. L. (1998). What changes in conceptual change? International Journal of Science Education, 20(10), 1155–1191.

    Article  Google Scholar 

  • Driver, R., Guesne, E., & Tiberghien, A. (1985). Children’s ideas in science. Philadelphia: Open University Press.

    Google Scholar 

  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas. London: Routledge.

    Google Scholar 

  • Duschl, R., & Hamilton, D. (1998). Conceptual change in science and in the learning of science. In B. J. Fraser & K. G. Tobin (Eds.), International handbook of science education (pp. 1047–1066). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Ergazaki, M., Saltapida, K., & Zogza, V. (2010). From young children’s ideas about germs to ideas shaping a learning environment. Research in Science Education, 40(5), 699–715.

    Article  Google Scholar 

  • Fleer, M. (1996). Early learning about light: mapping preschool children’s thinking about light before, during and after involvement in a two week teaching program. International Journal of Science Education, 18(7), 819–836.

    Article  Google Scholar 

  • Fleer, M., & Robbins, J. (2003). Understanding our youngest scientific and technological thinkers: international developments in early childhood science education. Research in Science Education, 33(4), 399–404.

    Article  Google Scholar 

  • Galili, I., & Hazan, A. (2000). Leamers’ knowledge in optics: interpretation, structure and analysis. International Journal of Science Education, 22(1), 57–88.

    Article  Google Scholar 

  • Gallegos Cázares, L., Flores Camacho, F., & Calderón Canales, E. (2008). Aprendizaje de las ciencias en preescolar: la construcción de representaciones y explicaciones sobre la luz y las sombras. Revista Iberoamericana de Educación, 47, 97–121.

    Google Scholar 

  • Gallegos Cázares, L., Flores Camacho, F., & Calderón Canales, E. (2009). Preschool science learning: the construction of representations and explanations about color, shadows, light and images. Review of Science, Mathematics and ICT Education, 3(1), 49–73.

    Google Scholar 

  • Gauvain, M. (1998). Thinking in niches: sociocultural influences on cognitive development. In D. Faulkiner, K. Littelton, & M. Woodhead (Eds.), Learning relationships in the classroom (pp. 67–89). London: Routledge.

    Google Scholar 

  • Guesne, E. (1985). Light. In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 10–32). Philadelphia: Open University Press.

    Google Scholar 

  • Halford, G. S. (1993). Children’s understanding—the development of mental models. Hillsdale: Erlbaum.

    Google Scholar 

  • Havu-Nuutinen, S. (2005). Examining young children’s conceptual change process in floating and sinking from a social constructivist perspective. International Journal of Science Education, 27, 259–279.

    Article  Google Scholar 

  • Inagaki, K. (1992). Piagetian and post-piagetian conceptions of development and their implications for science education in early childhood. Early Childhood Research Quarterly, 7, 115–133.

    Article  Google Scholar 

  • Kamii, C. (1982). La connaissance physique et le nombre à l’école enfantine. Approche piagétienne. Pratiques et théorie. Genève: Université de Genève.

    Google Scholar 

  • Kamii, C., & Kato, Y. (Eds.). (2007). Piaget’s constructivism and early childhood education: I. Physical-knowledge activities. Okayama City: Daigaku Kyoiku.

    Google Scholar 

  • Kampeza, M. (2006). Preschool children’s ideas about the Earth as a cosmic body and the day/night cycle. Journal of Science Education, 7(2), 119–122.

    Google Scholar 

  • Koliopoulos, D., & Argyropoulou, M. (2011). Constructing qualitative energy concepts in a formal educational context with 6–7 year old students. Review of Science, Mathematics & ICT Education, 5(1), 63–80.

    Google Scholar 

  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago: The University of Chicago Press.

    Google Scholar 

  • Lemeignan, G., & Weil-Barais, A. (1993). Construire des concepts en physique. Paris: Hachette.

    Google Scholar 

  • Lemke, J. L. (2001). Articulating communities: sociocultural perspectives on science education. Journal of Research in Science Teaching, 38(3), 296–316.

    Article  Google Scholar 

  • MacCormac, E. R. (1985). A cognitive theory of metaphor. Cambridge, Massachusetts: The MIT Press.

    Google Scholar 

  • Martinand, J. L. (1986). Connaître et transformer la matière. Berne: Peter Lang.

    Google Scholar 

  • Metz, K. E. (1997). On the complex relation between cognitive developmental research and children’s science curricula. Review of Educational Research, 67(1), 151–163.

    Article  Google Scholar 

  • Nersessian, N. (1984). Faraday to Einstein: constructing meaning in scientific theories. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Osborne, R. (1985). Building on children’s intuitive ideas. In R. Osborne & P. Freyberg (Eds.), Learning in science: the implications of children’s science (pp. 41–50). Auckland, New Zealand: Heinemann.

    Google Scholar 

  • Osborne, J., Black, P., Meadows, J., & Smith, M. (1993). Young children’s ideas about light and their development. International Journal of Science Education, 15(1), 83–93.

    Article  Google Scholar 

  • Peterfalvi, B. (2001). Obstacles et situations didactiques en sciences: processus intellectuels et confrontations. L’exemple des transformations de la matière. Unpublished Doctoral Thesis, Rouen: Université de Rouen.

    Google Scholar 

  • Petrie, H. (1979). Metaphor and learning. In A. Ortony (Ed.), Metaphor and thought (pp. 438–461). New York: Cambridge University Press.

    Google Scholar 

  • Piaget, J. (1971). Causalité et opérations. In J. Piaget & R. Garcia (Eds.), Les explications causales (pp. 11–140). Paris: PUF.

    Google Scholar 

  • Piaget, J., & Lannoy, J. D. (1967). La projection de la lumière et de la chaleur. Recherche non publiée sur la causalité - Manuscrit complet. Genève: Archives Jean Piaget.

    Google Scholar 

  • Piaget, J., & Vergopoulo, T. (1972). La transmission des vibrations entre deux diapasons. In J. Piaget (Ed.), La Transmission des mouvements (pp. 213–227). Paris: PUF.

    Google Scholar 

  • Ravanis, K. (1999). Représentations des élèves de l’école maternelle: le concept de lumière. International Journal of Early Childhood, 31(1), 48–53.

    Article  Google Scholar 

  • Ravanis, K. (2010). Représentations, Modèles Précurseurs, Objectifs-Obstacles et Médiation-Tutelle: concepts-clés pour la construction des connaissances du monde physique à l’âge de 5–7 ans. Revista Electrónica de Investigación en Educación en Ciencias, 5(2), 1–11.

    Google Scholar 

  • Ravanis, K. (2012). Représentations des enfants de 10 ans sur le concept de lumière: perspectives piagétiennes. Schème - Revista Eletrônica de Psicologia e Epistemologia Genéticas, 4(1), 70–84.

    Google Scholar 

  • Ravanis, K., & Bagakis, G. (1998). Science education in kindergarten: sociocognitive perspective. International Journal of Early Years Education, 6(3), 315–327.

    Article  Google Scholar 

  • Ravanis, K., & Boilevin, J. M. (2009). A comparative approach to the representation of light for five-, eight- and ten-year-old children: educational perspectives. Journal of Baltic Science Education, 8(3), 182–190.

    Google Scholar 

  • Ravanis, K., Koliopoulos, D., & Hadzigeorgiou, Y. (2004). What factors does friction depend on? A socio-cognitive teaching intervention with young children. International Journal of Science Education, 26(8), 997–1007.

    Article  Google Scholar 

  • Ravanis, K., Daoutsali, E., Nikolakopoulou, K., & Barke, H. D. (2011). Der Lichtbegriff bei 13-14-jährigen Schülern: eine didaktische Intervention angelehnt an dem Begriff der sozialen Markierung. Neue Didaktik, 5(1), 97–110.

    Google Scholar 

  • Resta-Schweitzer, M., & Weil-Barais, A. (2007). Éducation scientifique et développement intellectuel du jeune enfant. Review of Science, Mathematics & ICT Education, 1(1), 63–82.

    Google Scholar 

  • Robbins, J. (2005). ‘Brown paper packages’? A sociocultural perspective on young children’s ideas in science. Research in Science Education, 35(2), 151–172.

    Article  Google Scholar 

  • Roth, W.-M. (1998). Situated cognition and assessment of competence in science. Evaluation and Programming Planning, 21, 155–169.

    Article  Google Scholar 

  • Saint-Georges, M. (2011). Ombres et lumière. Limoges: CRDP du Limousin.

    Google Scholar 

  • Shepardson, D. P. (1999). Learning science in a first grade science activity: a Vygotskian perspective. Science Education, 83, 621–638.

    Article  Google Scholar 

  • Skoumios, M., & Hatzinikita, V. (2005/2006). The role of cognitive conflict in science concept learning. The International Journal of Learning, 12(7), 185–193.

    Google Scholar 

  • Skoumios, M., & Hatzinikita, V. (2006). Research-based teaching about science at the upper-primary school level. The International Journal of Learning, 13(5), 29–42.

    Google Scholar 

  • Stetsenko, A. P. (1999). Social interaction, cultural tools and the zone of proximal development: in search of synthesis. In S. Chaiklin, M. Hedegaard, & U. J. Jensen (Eds.), Activity theory and social practice: cultural–historical approaches (pp. 235–252). Aarhus: Aarhus University Press.

    Google Scholar 

  • Thompson, F., & Logue, S. (2006). An exploration of common student misconceptions in science. International Education Journal, 7(4), 553–559.

    Google Scholar 

  • Tsatsaroni, A., Ravanis, K., & Falaga, A. (2003). Studying the recontextualisation of science in preschool classrooms: drawing on Bernstein’s insights into teaching and learning practices. International Journal of Science and Mathematics Education, 1(4), 385–417.

    Article  Google Scholar 

  • Tytler, R., & Peterson, S. (2001). Deconstructing learning in science: young children’s responses to a classroom sequence on evaporation. Research in Science Education, 30(4), 339–355.

    Article  Google Scholar 

  • Venville, G., Adey, P., Larkin, S., & Robertson, A. (2003). Fostering thinking through science in the early years of schooling. International Journal of Science Education, 25(11), 1313–1331.

    Article  Google Scholar 

  • Vosniadou, S. (1989). Analogical reasoning as a mechanism in knowledge acquisition: a developmental perspective. In S. Vosniadou & A. Ortony (Eds.), Similarity and analogical reasoning (pp. 413–437). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Vygotski, L. S. (1962). Thought and language. Cambridge: MIT.

    Book  Google Scholar 

  • Vygotski, L. S. (1978). Mind in society. Cambridge: Harvard University Press.

    Google Scholar 

  • Weil-Barais, A. (2001). Constructivist approaches and the teaching of science. Prospects, 31(2), 187–196.

    Article  Google Scholar 

  • Zogza, V., & Papamichael, Y. (2000). The development of the concept of alive by preschoolers through a cognitive conflict teaching intervention. European Journal of Psychology of Education, 15(2), 191–205.

    Article  Google Scholar 

Download references

Acknowledgments

This publication was made possible through the support of the “Archives Jean Piaget” in the University of Geneva. We thank very much the Director Professor Pierre Barouillet, the Scientific Committee and the staff of the Archives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Ravanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravanis, K., Christidou, V. & Hatzinikita, V. Enhancing Conceptual Change in Preschool Children’s Representations of Light: A Sociocognitive Approach. Res Sci Educ 43, 2257–2276 (2013). https://doi.org/10.1007/s11165-013-9356-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-013-9356-z

Keywords

Navigation