Advertisement

Research in Science Education

, Volume 41, Issue 2, pp 225–243 | Cite as

Post-Secondary Students’ Relationship to People They Consider to Be Scientific Experts

  • Chantal PouliotEmail author
Article

Abstract

This article is situated in contemporary debates about the ways to achieve a scientific literacy that encourages a greater lay participation in public debates and political decision making. Drawing on the notion of “relationship to scientific experts” (in French, “rapport aux experts scientifiques”), I explore the ways in which a group of 3 Quebec post-secondary students describe the relationships they hold toward people whom they consider to be scientific experts, as revealed during a project in which they investigated the controversy surrounding cellular telephone use. To this end, I scrutinize how the members of the group go about describing scientific experts and picture a prospective face-to-face discussion with a scientific expert. The data come from a case study (conducted over a 15-week period). The findings show that the group maintains a relationship of intimidation by scientific experts, in which the latter are depicted in terms of their knowledge and qualifications. Accordingly, the group was overawed not only by the accumulation of knowledge held and produced by scientific experts but also by the latter’s research experience and the high social recognition they occasionally enjoyed. Similarly, the group describes a prospective face-to-face discussion with a doctor or a researcher in terms of an impersonal, intimidating encounter during which its members’ learning and comprehension in relation to the controversy are assumed to be unequal to the task. The implications of the findings for future research are discussed.

Keywords

Relationship to scientific experts Socioscientific issue Lay participation in public debates Case study Science education 

Notes

Acknowledgements

This research was supported by grants from the Fonds Québécois de la Recherche sur la Société et la Culture (FQRSC) and from the Social Sciences and Humanities Research Council of Canada (SSHRC). I thank the anonymous reviewers for their detailed comments on the draft and Jacques Désautels for helpful discussions.

References

  1. Aikenhead, G. S. (2006). Science education for everyday life. New York: Teachers College.Google Scholar
  2. Albe, V. (2008). When scientific knowledge, daily life experience, epistemological and social considerations intersect: students’ argumentation in group discussions on a socio-scientific issue. Research in Science Education, 38, 67–90.CrossRefGoogle Scholar
  3. Bader, B. (2003). Interprétation d’une controverse scientifique : stratégies argumentatives d’adolescentes et d’adolescents québécois. La Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies/ Canadian journal of science, mathematics and technology education, 231–250.Google Scholar
  4. Ben Abderrahman, M.-L. (2000). Pertinence et limites de la notion de « rapport au savoir » en didactique des sciences. In A. Chabchoub (Dir.), Rapports aux savoirs et apprentissage des sciences, Actes du 5 e Colloque international de didactique et d’épistémologie des sciences, Sfax.Google Scholar
  5. Bingle, W. H., & Gaskell, P. J. (1994). Scientific literacy for decision making and the social construction of scientific knowledge. Science Education, 78, 185–201.CrossRefGoogle Scholar
  6. Bucchi, M., & Neresini, F. (2008). Science and public participation. In E. J. Hackett, O. Amsterdamska, M. Lynch & J. Wajcman (Eds.), The handbook of science and technologies studies (pp. 449–472). Cambridge: MIT Press.Google Scholar
  7. Caillot M. (2000). Rapport(s) au(x) savoir(s) et didactique des sciences. In A. Chabchoub (Ed.), Rapports aux savoirs et apprentissage des sciences, Actes du 5e Colloque international de didactique et d’épistémologie des sciences, Sfax.Google Scholar
  8. Callon, M. (1999). The role of lay people in the production and dissemination of scientific knowledge. Science, Technology, & Society, 4, 81–94.CrossRefGoogle Scholar
  9. Callon, M., & Rabeharisoa, V. (2003). Research ‘in the wild’ and the shapping of new social identities. Technology & Society, 25, 103–204.Google Scholar
  10. Callon, M., Lascoumes, P., & Barthe, Y. (2001). Agir dans un monde incertain. Essai sur la démocratie technique/Acting in an uncertain world; An essay on technical democracy. Paris: Seuil.Google Scholar
  11. Chabchoub, A. (2000). Rapports au(x) savoir(s), didactique des sciences et anthropologie. Dans A. Chabchoub (dir.), Rapports aux savoirs et apprentissage des sciences, (Actes du 5e Colloque international de didactique et d’épistémologie des sciences, Sfax).Google Scholar
  12. Charlot, B. (1997). Du rapport au savoir: éléments pour une théorie. Paris: Anthropos.Google Scholar
  13. Charlot, B. (2003). La problématique du rapport au savoir. Dans S. Maury & M. Caillot (dir.), Rapport au savoir et didactiques, Paris: Fabert, pp. 33–50.Google Scholar
  14. Charlot, B., Bautier, E., & Rochex, J.-Y. (1992). École et savoir dans les banlieues et ailleurs. Paris: Armand Colin.Google Scholar
  15. Chartrain, J.-L., & Caillot, M. (1999), Apprentissages scientifiques et rapports aux savoirs : le cas du volcanisme au CM2, (Actes des 1re rencontres de l’A.R.D.I.S.T, Cachan).Google Scholar
  16. Chartrain, J.-L., & Caillot, M. (2001), Rapport au savoir et apprentissages scientifiques : quelle méthodologie pour analyser le type de rapport au savoir des élèves? (Actes des 2e rencontres scientifiques de l’A.R.D.I.S.T, Carry-Le-Rouet).Google Scholar
  17. Collins, H. M., & Evans, R. (2002). The third wave of science studies: studies of expertise and experience. Social Studies of Science, 32, 235–296.CrossRefGoogle Scholar
  18. Cross, R. T., & Price, R. F. (2002). Teaching controversial science for social responsibility: The case of food production. In W.-M. Roth & J. Désautels (Eds.), Science education as/for sociopolitical action (pp. 99–123). New York: Peter Lang.Google Scholar
  19. Davies, I. (2004). Science and citizenship education. International Journal of Science Education, 26, 1751–1763.CrossRefGoogle Scholar
  20. Duschl, R., Erduran, S., Grandy, R., & Rudolph, J. (2008). Introduction to special issue: science studies and science education. Science Education, 92, 1–4.CrossRefGoogle Scholar
  21. Einsiedel, E., Jelsoe, E., & Breck, T. (2001). Publics at the technology table: the consensus conference in Denmark, Canada, and Australia. Public Understanding of Science, 10, 83–98.CrossRefGoogle Scholar
  22. Epstein, S. (1995). The construction of lay expertise: AIDS activism and the forging of credibility in the reform of clinical trials. Science, Technology & Human Values, 20, 408–437.CrossRefGoogle Scholar
  23. Epstein, S. (2008). Patient groups and health movements. In E. J. Hackett, O. Amsterdamska, M. Lynch & J. Wajcman (Eds.), The handbook of science and technologies studies (pp. 499–540). Cambridge: MIT Press.Google Scholar
  24. Evans, R., & Collins, H. (2008). Expertise: From attribute to attribution and back again? In E. J. Hackett, O. Amsterdamska, M. Lynch & J. Wajcman (Eds.), The handbook of science and technologies studies (pp. 609–630). Cambridge: MIT Press.Google Scholar
  25. Fensham, P. J. (2002). De nouveaux guides pour l’alphabétisation scientifique. Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies/Canadian journal of science, mathematics and technology education, 2, 133–149.Google Scholar
  26. Fourez, G. (1997). Scientific and technological literacy as a social practice. Social Studies of Science, 27, 903–936.CrossRefGoogle Scholar
  27. Goffard, M. (2000, April). Rapport au savoir et activités de documentation scientifiques. (Colloque « Rapport au savoir et apprentissages scientifiques », Sfax).Google Scholar
  28. Goven, J. (2003). Deploying the consensus conference in New Zealand: democracy and deproblematization. Public Understanding of Science, 12, 423–440.CrossRefGoogle Scholar
  29. Haarala, C., Takio, F., Rintee, T., Laine, M., Koivisto, M., Revonsuo, A., et al. (2007). Pulsed and continuous wave mobile phone exposure over left versus right hemisphere: effects on human cognitive function. Bioelectromagnetics, 28, 289–295.CrossRefGoogle Scholar
  30. Hardell, L., Carlberg, M., Söderqvist, F., Hansson Mild, K., & Morgan, L. L. (2007). Long-term use of cellular phones and brain tumours—increased risk associated with use for >10 years. Occupational and Environmental Medicine, 64, 626–632.CrossRefGoogle Scholar
  31. Horlick-Jones, T. (2004). Experts in risk? ... Do they exist. Health Risk and Society, 6, 107–114.CrossRefGoogle Scholar
  32. Irwin, A. (2001). Constructing the scientific citizen: science and democracy in the biosciences. Public Understanding of Science, 10, 1–18.CrossRefGoogle Scholar
  33. Jasanoff, S. (2003). Breaking the waves in science studies: comment on H. M Collins and Robert Evans, ‘The third wave of science studies’. Social Studies of Science, 33, 389–400.CrossRefGoogle Scholar
  34. Jellab, A. (2001). Scolarité et rapport aux savoirs en lycée professionnel. Paris: PUF.Google Scholar
  35. Jelman, Y. (2002). Le rapport aux objets de savoir comme critère de différentiation entre apprenants: cas de la foudre. Cahiers pédagogiques, 277, 2–14.Google Scholar
  36. Jiménez-Aleixandre, M. P., & Pereiro-Munoz, C. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal in Science Education, 24, 1171–1190.CrossRefGoogle Scholar
  37. Joubert, V., Bourthoumieu, S., Leveque, P., & Yardin, C. (2008). Apoptosis is induced by radiofrequency fields through the caspase-independent mitochondrial pathway in cortical neurons. Radiation Research, 169, 38–45.CrossRefGoogle Scholar
  38. Kerr, A., Cunningham-Burley, S., & Amos, A. (1998). The new genetics and health: mobilizing lay expertise. Public Understanding of Science, 7, 41–60.CrossRefGoogle Scholar
  39. Kerr, A., Cunningham-Burley, S., & Tutton, R. (2007). Shifting subject positions: experts and lay people in public dialogue. Social Studies of Science, 37, 385–411.CrossRefGoogle Scholar
  40. Kolstø, S. D. (2001). To trust or not to trust, ...—Pupils’ ways of judging information encountered in a socio-scientific issue. International Journal of Science Education, 23, 877–901.CrossRefGoogle Scholar
  41. Kolstø, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., et al. (2006). Science students’ critical examination of scientific information related to socioscientific issues. Science Education, 90, 632–655.CrossRefGoogle Scholar
  42. Kvale, S. (1995). The social construction of validity. Qualitative Inquiry, 1, 19–40.CrossRefGoogle Scholar
  43. Larochelle, M., & Désautels, J. (2001). Les enjeux socioéthiques des désaccords entre scientifiques: un aperçu de la construction discursive d’étudiants et d’étudiantes. Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies, 1, 39–60.Google Scholar
  44. Larochelle, M., & Désautels, J. (2006). L’éducation aux sciences et le croisement des expertises. In A. Legardez & L. Simonneaux (Eds.), L’école à l’épreuve de l’actualité, enseigner les questions vives (pp. 61–77). Paris: ESF Éditeur.Google Scholar
  45. Lee Kleinman, D. (2000). Democratizations of science and technology. In D. Lee Kleinman (Ed.), Science, technology and democracy (pp. 139–169). New York: State University of New York Press.Google Scholar
  46. Maingain, A., Dufour, B. & Fourez, G. (Eds.). (2002). Approches didactiques de l’interdisciplinarité. Bruxelles: De Boeck Université.Google Scholar
  47. Mairone, C., & Dupin, J.-J. (2005, octobre). Concept de fossile et rapport au(x) savoir(s) : une étude au cycle 3 de l’école primaire. (Quatrième rencontre de l’ARDIST. Lyon).Google Scholar
  48. Maury, S., & Caillot, M. (2003). Rapport au savoir et didactiques. Paris: Éditions Fabert.Google Scholar
  49. Michael, M. (1992). Lay discourses of science: science-in-general, science-in-particular, and self. Science, Technology and Human Values, 17, 313–333.CrossRefGoogle Scholar
  50. Oftedal, G., Straume, A., Johnsson, A., & Stovner, L. J. (2007). Mobile phone headache: a double blind, sham-controlled provocation study. Cephalalgia, 27, 447–455.CrossRefGoogle Scholar
  51. Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41, 994–1020.CrossRefGoogle Scholar
  52. Patton, M. Q. (1990). Qualitative evaluation and research methods. Newbury Park: Sage.Google Scholar
  53. Pouliot, C. (2007). Appréhension d’une controverse sociotechnique et rapport aux experts scientifiques: une étude de cas. [Students’ apprehension of a sociotechnical controversy and their relationship to scientific experts: A case study]. Unpublished doctoral dissertation, Université Laval, Quebec, Canada.Google Scholar
  54. Pouliot, C. (2008). Students’ inventory of social actors concerned by the controversy surrounding cellular telephones: a case study. Science Education, 92, 543–559.CrossRefGoogle Scholar
  55. Pouliot, C. (2009). Using the deficit model, public debate model and co-production of knowledge models to interpret points of view of students concerning citizens’ participation in socioscientific issues. International Journal of Environmental and Science Education, 4, 49–73.Google Scholar
  56. Prior, L. (2003). What is the problem with experts? Social Studies of Science, 31, 123–149.Google Scholar
  57. Rochex, Y. (2004). La notion de rapport au savoir: convergence et débats théoriques. Pratiques Psychologiques, 10, 93–106.CrossRefGoogle Scholar
  58. Roqueplo, P. (1997). Entre savoir et décision, l’expertise scientifique. Paris: Institut national de la recherche agronomique.Google Scholar
  59. Roth, W.-M., & Désautels, J. (2002). Science education as/for sociopolitical action: Charting the landscape. In W.-M. Roth & J. Désautels (Eds.), Science education as/for sociopolitical action (pp. 1–16). New York: P. Lang.Google Scholar
  60. Roth, W.-M., & Désautels, J. (2004). Educating for citizenship: reappraising the role of science education. Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies/Canadian journal of science, mathematics and technology education, 4, 1–27.Google Scholar
  61. Rowe, G., & Frewer, L. J. (2000). Public participation methods: a framework for evaluation. Science, Technology & Human Values, 25, 3–29.CrossRefGoogle Scholar
  62. Sadler, T. D. (2004). Informal reasoning regarding socioscientific issues: a critical review of research. Journal of Research in Science Teaching, 41, 513–536.CrossRefGoogle Scholar
  63. Sadler, T., & Donnelly, L. A. (2006). Socioscientific argumentation: the effect of content knowledge and morality. International Journal of Science Education, 28, 1463–1488.CrossRefGoogle Scholar
  64. Sadler, T. D., & Zeidler, D. L. (2004). The morality of socioscientific issues: construal and resolution of genetic engineering dilemmas. Science Education, 88, 4–27.CrossRefGoogle Scholar
  65. Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science response to a socioscientific issue. International Journal of Science Education, 26, 387–409.CrossRefGoogle Scholar
  66. Sadler, T., Barab, S. A., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37, 371–391.CrossRefGoogle Scholar
  67. Shamos, M. (1995). The myth of scientific literacy. New Brunswick: Rutgers University Press.Google Scholar
  68. Sismondo, S. (2008). Science and technology studies and an engaged program. In E. J. Hackett, O. Amsterdamska, M. Lynch & J. Wajcman (Eds.), The handbook of science and technologies studies (pp. 13–31). Cambridge: MIT Press.Google Scholar
  69. Stake, R. E. (1995). The art of case study research. Thousand Oaks: Sage.Google Scholar
  70. Tytler, R., Duggan, S., & Gott, R. (2001). Dimensions of evidence, the public understanding of science and science education. International Journal of Science Education, 23, 815–832.CrossRefGoogle Scholar
  71. Wynne, B. (1996). May the sheep safely graze? A reflexive view of the expert-lay knowledge divide. In S. Lash, B. Szerszynski & B. Wynne (Eds.), Risk, environment and modernity: Towards a new ecology (pp. 44–85). London: Sage.Google Scholar
  72. Wynne, B. (2003). Seasick on the third wave? Subverting the hegemony of propositionalism: response to Collins and Evans. Social Studies of Science, 33, 401–417.CrossRefGoogle Scholar
  73. Wynne, B. (2005). Reflexing complexity, post-genomic knowledge and reductionist return in public science. Theory, Culture & Society, 22, 67–94.CrossRefGoogle Scholar
  74. Yin, R. K. (1994). Case study research: Design and methods. Beverly Hills: Sage.Google Scholar
  75. Zeidler, D. L., Sadler, T. D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: a research-based framework for socioscientific issues. Science Education, 89, 357–377.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Département d’études sur l’enseignement et l’apprentissageUniversité LavalQuébecCanada

Personalised recommendations