Skip to main content
Log in

Learning Using Dynamic and Static Visualizations: Students’ Comprehension, Prior Knowledge and Conceptual Status of a Biotechnological Method

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

The importance of biotechnology education at the high-school level has been recognized in a number of international curriculum frameworks around the world. One of the most problematic issues in learning biotechnology has been found to be the biotechnological methods involved. Here, we examine the unique contribution of an animation of the polymerase chain reaction (PCR) in promoting conceptual learning of the biotechnological method among 12th-grade biology majors. All of the students learned about the PCR using still images (n = 83) or the animation (n = 90). A significant advantage to the animation treatment was identified following learning. Students’ prior content knowledge was found to be an important factor for students who learned PCR using still images, serving as an obstacle to learning the PCR method in the case of low prior knowledge. Through analysing students’ discourse, using the framework of the conceptual status analysis, we found that students who learned about PCR using still images faced difficulties in understanding some mechanistic aspects of the method. On the other hand, using the animation gave the students an advantage in understanding those aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acuna, S. R., & Sanchez, E. (2004). “Dialogichelps to learning with hypermedia. Valencia, Spain: Paper presented at the European Association for Research on Learning and Instruction (EARLI) SIG2 meeting.

    Google Scholar 

  • Ainsworth, S., & Van Labeke, N. (2004). Multiple forms of dynamic representations. Learning and Instruction, 14, 241–255. doi:10.1016/j.learninstruc.2004.06.002.

    Article  Google Scholar 

  • Ardac, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11), 1269–1298. doi:10.1080/09500690500102284.

    Article  Google Scholar 

  • Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.

    Google Scholar 

  • Baddely, A. (1998). Human Memory. Boston: Allyn and Bacon.

    Google Scholar 

  • Bahar, M., Johnstone, A., & Sutcliffe, R. G. (1999). Investigation of students’ cognitive structure in elementary genetics through word association tests. Journal of Biological Education, 33, 134–141.

    Google Scholar 

  • Blissett, G., & Atkins, M. (1993). Are they thinking? Are they learning? A study of the use of interactive video. Computers & Education, 21, 31–39. doi:10.1016/0360-1315(93)90045-K.

    Article  Google Scholar 

  • Bloom, B. S. (1956). Taxonomy of Educational Objectives. New York: David McKay Co Inc.

    Google Scholar 

  • Carey, S. (2002). The origin of concepts: Continuing the conversation. In N. L. Stein, P. J. Bauer, & M. Rabinowitz (Eds.), Representation, memory, and development: Essays in honor of Jean Mandler (pp. 43–52). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • ChanLin, L. J. (2001). Formats and prior knowledge on learning in a computer-based lesson. Journal of Computer Assisted Learning, 17, 409–419. doi:10.1046/j.0266-4909.2001.00197.x.

    Article  Google Scholar 

  • Conner, L. (2000). The significance of an approach to the teaching of societal issues related to biotechnology. New Orleans, LA, USA: Paper presented at the Annual Meeting of the American Educational Research Association.

    Google Scholar 

  • Cook, M. P. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. doi:10.1002/sce.20164.

    Article  Google Scholar 

  • de Jong, T., Martin, E., Zamarro, J., Esqembre, F., Swaak, J., & Van Joolingen, W. (1999). The integration of computer simulation and learning support: An example from the physics domain of collisions. Journal of Research in Science Teaching, 36(5), 597–615. doi:10.1002/(SICI)1098-2736(199905)36:5<597::AID-TEA6>3.0.CO;2-6.

    Article  Google Scholar 

  • Duit, R., & Glynn, S. (1996). Mental modeling. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe: Current issues and themes (pp. 166–176). London: Falmer.

    Google Scholar 

  • Edmonston, J. (2000). The biotechnology revolution: Distinguishing fact from fantasy and folly? Australian Science Teachers’ Journal, 46(4), 11–16.

    Google Scholar 

  • Falk, H., Piontkevitz, Y., Brill, G., Baram, A., & Yarden, A. (2003). Gene Tamers: Study Biotechnology Through Research (in Hebrew). Rehovot, Israel: The Amos de-Shalit Center for Science Teaching.

    Google Scholar 

  • Falk, H., Brill, G., & Yarden, A. (2008). Teaching a biotechnology curriculum based on adapted primary literature. International Journal of Science Education, 30(14), 1841–1866.

    Article  Google Scholar 

  • Felder, R. (1993). Reaching the second tier: Learning and teaching styles in college science education. Journal of College Science Teaching, 23(5), 286–290.

    Google Scholar 

  • France, B., & Gilbert, J. K. (2005). A model for communication about biotechnology. Rotterdam: Sense Publishers in cooperation with The New Zealand Biotechnology Learning Hub.

    Google Scholar 

  • Glasersfeld, E. (1998). Cognition, construction of knowledge, and teaching. In M. R. Matthews (Ed.), Constructivism in Science Education (pp. 11–30). Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Guenther, R. K. (1998). Human cognition. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Hegarty, M. (2004). Dynamic visualizations and learning: Getting to the difficult questions. Learning and Instruction, 14, 343–351. doi:10.1016/j.learninstruc.2004.06.007.

    Article  Google Scholar 

  • Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated expertise in integrating use of multimedia simulation into secondary science teaching. International Journal of Science Education, 28(7), 701–732. doi:10.1080/09500690500404656.

    Article  Google Scholar 

  • Hewson, P., & Lemberger, J. (2000). Status as the hallmark of conceptual learning. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education: The contribution of research (pp. 110–125). Buckingham, UK: Open university press.

    Google Scholar 

  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. A. Grouws (Ed.), Handbook of research in mathematics teaching and learning (pp. 65–97). New York: Macmillan.

    Google Scholar 

  • Hoffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722–738. doi:10.1016/j.learninstruc.2007.09.013.

    Article  Google Scholar 

  • Hung, W., & Jonassen, D. H. (2006). Conceptual understanding of causal reasoning in physics. International Journal of Science Education, 28(13), 1601–1621. doi:10.1080/09500690600560902.

    Article  Google Scholar 

  • Israeli Ministry of Education (2003). Syllabus of biological studies: Jerusalem, Israel, State of Israel Ministry of Education Curriculum Center (in Hebrew). See www.bioteach.snunit.k12.il/upload/.bb.

  • Israeli Ministry of Education (2005). Syllabus of biotechnological studies: Jerusalem, Israel, State of Israel Ministry of Education Curriculum Center (in Hebrew). See www.biotech.ort.org.il.

  • Kelly, R. M., & Jones, L. L. (2007). Exploring how different features of animations of sodium chloride dissolution affect students’ explanations. Journal of Science Education and Technology, 16, 413–429. doi:10.1007/s10956-007-9065-3.

    Article  Google Scholar 

  • Koslowski, B., Okagaki, L., Lorenz, C., & Umbach, D. (1989). When covariation is not enough: The role of causal mechanism, sampling method, and sample size in causal reasoning. Child Development, 60, 1316–1327. doi:10.2307/1130923.

    Article  Google Scholar 

  • Kozma, R. (2000). The use of multiple representations and the social construction of understanding in chemistry. In M. J. Jacopson, & R. B. Kozma (Eds.), Innovations in Science and Mathematics Education (pp. 11–45). Mahwah, NJ: Lawrence Earbaum Associates.

    Google Scholar 

  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226. doi:10.1016/S0959-4752(02)00021-X.

    Article  Google Scholar 

  • Kozma, R., & Russell, J. (1997). Multimedia and understanding: Expert and novice responces to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968. doi:10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U.

    Article  Google Scholar 

  • Kramer, B., Prechtl, H., & Bayrhuber, H. (2004). Using micro-tasks to foster the understanding of signal transduction in a multimedia learning environment. Patras, Greece: Paper presented at the Paper presented at the European Researchers in the Didactics of Biology (ERIDOB) meeting.

    Google Scholar 

  • Large, A. (1996). Computer animation in an instructional environment. Library & Information Science Research, 18, 3–23. doi:10.1016/S0740-8188(96)90028-6.

    Article  Google Scholar 

  • Lewalter, D. (2003). Cognitive strategies for learning from static and dynamic visuals. Learning and Instruction, 13, 177–189. doi:10.1016/S0959-4752(02)00019-1.

    Article  Google Scholar 

  • Lewis, J., & Wood-Robinson, C. (2000). Genes, chromosomes, cell division and inheritance-do students see any relationship? International Journal of Science Education, 22(2), 177–195. doi:10.1080/095006900289949.

    Article  Google Scholar 

  • Lock, R., Miles, C., & Hughes, S. (1995). The influence of teaching on knowledge and attitudes in biotechnology and genetic engineering contexts: Implications for teaching controversial issues and the public understanding of science. Secondary Science Review, 76(276), 47–59.

    Google Scholar 

  • Lowe, R. (2003). Animation and learning: selective processing of information in dynamic graphics. Learning and Instruction, 13, 157–176. doi:10.1016/S0959-4752(02)00018-X.

    Article  Google Scholar 

  • Maclellan, E. (2005). Conceptual learning: The priority for higher education. British Journal of Educational Studies, 53(2), 129–147. doi:10.1111/j.1467-8527.2005.00287.x.

    Article  Google Scholar 

  • Marbach-Ad, G. (2001). Attempting to break the code in students’ comprehension of genetic concepts. Journal of Biological Education, 35(4), 183–189.

    Google Scholar 

  • Mayer, R. (1996). Learners as information processors: Legacies and limitations of educational psychology’s second metaphor. Educational Psychologist, 31, 151–161. doi:10.1207/s15326985ep3103&4_1.

    Article  Google Scholar 

  • Mayer, R., & Moreno, R. (2002). Animations as an aid to multimedia learning. Educational Psychology Review, 14(1), 87–99. doi:10.1023/A:1013184611077.

    Article  Google Scholar 

  • Mayer, R., Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promote active learning: Annotated Illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology. Applied, 11(4), 256–265. doi:10.1037/1076-898X.11.4.256.

    Article  Google Scholar 

  • McClean, P., Johnson, C., Rogers, R., Daniels, L., Reber, J., Slator, B. M., et al. (2005). Molecular and cellular biology animations: Development and impact on student learning. Cell Biology Education, 4, 169–179. doi:10.1187/cbe.04-07-0047.

    Article  Google Scholar 

  • Mullis, K. B. (1990). The unusual origin of the polymerase chain reaction. Scientific American, 262, 36–43.

    Article  Google Scholar 

  • Olsher, G., Berl, D. B., & Dreyfus, A. (1999). Biotechnologies as a context for enhancing junior high-school students’ ability to ask meaningful questions about abstract biological processes. International Journal of Science Education, 21(2), 137–153. doi:10.1080/095006999290750.

    Article  Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual coding approach. New York: Oxford University Press.

    Google Scholar 

  • Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 221–227.

    Google Scholar 

  • Reiber, L. (1990). Using computer animated graphics in science instruction with children. Journal of Educational Psychology, 82(1), 135–140. doi:10.1037/0022-0663.82.1.135.

    Article  Google Scholar 

  • Reiber, L. (1991). Animation, incidental learning and continuing motivation. Journal of Educational Psychology, 83(3), 318–328.

    Article  Google Scholar 

  • Salomon, G. (1979). Interaction of media, cognition, and learning. San Francisco: Jossey-Bass.

    Google Scholar 

  • Sanger, M. J., & Greenbowe, T. J. (1997). Common student misconceptions in electrochemistry: Galvanic, electrolytic, and concentration cells. Journal of Research in Science Teaching, 34(3), 377–398. doi:10.1002/(SICI)1098-2736(199704)34:4<377::AID-TEA7>3.0.CO;2-O.

    Article  Google Scholar 

  • Sanger, M. J., Brecheisen, D. M., & Hynek, B. M. (2001). Can computer animations affect college biology students’ conceptions about diffusion & osmosis? The American Biology Teacher, 63(2), 104–109. doi:10.1662/0002-7685(2001)063[0104:CCAACB]2.0.CO;2.

    Article  Google Scholar 

  • Scaife, M., & Rogers, Y. (1996). External cognition: how do graphical representations work? International Journal of Human-Computer Studies, 45, 185–213. doi:10.1006/ijhc.1996.0048.

    Article  Google Scholar 

  • Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237. doi:10.1016/S0959-4752(02)00022-1.

    Article  Google Scholar 

  • Solomon, J. (2001). Teaching for scientific literacy: What could it mean. The School Science Review, 82(300), 93–96.

    Google Scholar 

  • Steele, F., & Aubusson, P. (2004). The challenge in teaching biotechnology. Research in Science Education, 34, 365–387. doi:10.1007/s11165-004-0842-1.

    Article  Google Scholar 

  • Stith, B. J. (2004). Use of animation in teaching cell biology. Cell Biology Education, 3, 181–188.

    Article  Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312. doi:10.1016/0959-4752(94)90003-5.

    Article  Google Scholar 

  • Trowbridge, J. E., & Wandersee, J. H. (1996). How do graphics presented during college biology lessons affect students’ learning? Journal of College Science Teaching, 26(1), 54–57.

    Google Scholar 

  • Tsui, C.-Y., & Treagust, D. F. (2007). Understanding genetics: Analysis of secondary students’ conceptual status. Journal of Research in Science Teaching, 44(2), 205–235. doi:10.1002/tea.20116.

    Article  Google Scholar 

  • Tversky, B., & Morrison, J. B. (2002). Animation: can it faciliate? International Journal of Human-Computer Studies, 57, 247–262. doi:10.1006/ijhc.2002.1017.

    Article  Google Scholar 

  • Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32, 521–534. doi:10.1002/tea.3660320508.

    Article  Google Scholar 

  • Wittrock, M. C. (1974). Learning as a generative activity. Educational Psychology, 11, 87–95.

    Article  Google Scholar 

  • Yang, E. M., Andre, T., & Greenbowe, T. Y. (2003). Spatial ability and the impact of visualization/animation on learning electrochemistry. International Journal of Science Education, 25, 329–349. doi:10.1080/09500690210145738b.

    Google Scholar 

  • Yarden, H., Marbach-Ad, G., & Gershony, J. M. (2004). Using the concept map technique in teaching introductory cell biology to college freshmen. Bioscene-Journal of college biology education, 30(1), 3–13.

    Google Scholar 

Download references

Acknowledgments

We thank the graphic designers who enabled us to develop the animations, as well as the students and teachers who participated in this study. Author is the incumbent of the Helena Rubinstein Career Development Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anat Yarden.

Appendix

Appendix

The series of 5 cards with the still images used in this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarden, H., Yarden, A. Learning Using Dynamic and Static Visualizations: Students’ Comprehension, Prior Knowledge and Conceptual Status of a Biotechnological Method. Res Sci Educ 40, 375–402 (2010). https://doi.org/10.1007/s11165-009-9126-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-009-9126-0

Keywords

Navigation