Skip to main content

Advertisement

Log in

Concept Mapping Assessment of Media Assisted Learning in Interdisciplinary Science Education

  • Published:
Research in Science Education Aims and scope Submit manuscript

Abstract

Acquisition of conceptual knowledge is a central aim in science education. In this study we monitored an interdisciplinary hypermedia assisted learning unit on hibernation and thermodynamics based on cooperative learning. We used concept mapping for the assessment, applying a pre-test/post-test design. In our study, 106 9th graders cooperated by working in pairs (n = 53) for six lessons. As an interdisciplinary learning activity in such complex knowledge domains has to combine many different aspects, we focused on long-term knowledge. Learners working cooperatively in dyads constructed computer-supported concept maps which were analysed by specific software. The data analysis encompassed structural aspects of the knowledge corresponding to a target reference map. After the learning unit, the results showed the acquisition of higher-order domain-specific knowledge structures which indicates successful interdisciplinary learning through the hypermedia learning environment. The benefit of using a computer-assisted concept mapping assessment for research in science education, and in science classrooms is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ballstaedt, S. (1995). Interdisciplinary learning: Aspects of subject-integrative courses [Interdisziplinäres Lernen: Aspekte des fächerverbindenden Unterrichts]. Tübingen: DIFF.

    Google Scholar 

  • Barney, E., Mintzes, J., & Yen, C.-F. (2005). Assessing knowledge, attitudes and behavior toward charismatic megafauna: The case of dolphins. The Journal of Environmental Education, 36, 41–55. doi:10.3200/JOEE.36.2.41-55.

    Article  Google Scholar 

  • Berck, K.-H. (2005). Biologiedidaktik. Wiebelsheim: Quelle & Meyer.

    Google Scholar 

  • Bonato, M. (1990). Wissensstrukturierung mittels Struktur-Lege-Techniken. Eine graphentheoretische Analyse von Wissensnetzen. Frankfurt/M.: Peter Lang.

    Google Scholar 

  • Bortz, J., & Döring, N. (2002). Forschungsmethoden und Evaluation für Human- und Sozialwissenschaftler. Heidelberg: Springer.

    Google Scholar 

  • Bruhn, J., Fischer, F., Gräsel, C., & Mandl, H. (2000). Kooperatives lernen mit mapping-techniken. In H. Mandl, & F. Fischer (Eds.), Wissen sichtbar machen. Wissensmanagement mit Mapping-Techniken (pp. 119–133). Göttingen: Hogrefe.

    Google Scholar 

  • Bünder, W. (2003). PING: Beispiel “Ökologisches Wohnen”. Fragen stellen, untersuchen, erklären und sein Wissen nutzen: Wissenschaftliches Arbeiten im naturwissen-schaftlichen Unterricht. Naturwissenschaften im Unterricht – Physik, 74, 9–11.

    Google Scholar 

  • Dillenbourg, P., Baker, M., Blaye, A., & O’Malley, C. (1996). The evolution of research on collaborative learning. In E. Spada, & P. Reimann (Eds.), Learning in humans and machine: Towards an interdisciplinary learning science (pp. 189–211). Oxford: Elsevier.

    Google Scholar 

  • Eckert, A. (1998). Kognition und Wissensdiagnose: Die Entwicklung und empirische Überprüfung des computerunterstützten wissensdiagnostischen Instrumentariums Netzwerk-Elaborierungs-Technik (NET). Lengerich, Berlin: Pabst.

    Google Scholar 

  • Eckert, A. (2000). Die Netzwerk-Elaborations-Technik (NET) – Ein computerunter-stütztes Verfahren zur Diagnose komplexer Wissensstrukturen. In H. Mandl, & F. Fischer (Eds.), Wissen sichtbar machen. Wissensmanagement mit Mapping-Techniken (pp. 137–157). Göttingen: Hogrefe.

    Google Scholar 

  • Engelbrecht, A., Mintzes, J., Brown, L., & Kelso, P. (2005). Probing understanding in physical geology using concept maps and clinical interviews. Journal of Geoscience Education, 53, 263–270.

    Google Scholar 

  • Girwidz, R., Bogner, F. X., Rubitzko, T., & Schaal, S. (2006). Media assisted learning in science education: An interdisciplinary approach to hibernation and energy transfer. Science Education International, 17, 95–107.

    Google Scholar 

  • Goldsmith, T., & Johnson, P. (1990). A structural assessment of classroom learning. In R. W. Schvaneveldt (Ed.), Pathfinder associative networks: Studies in knowledge organization (pp. 241–254). Norwood, NJ: Abl.

    Google Scholar 

  • Hawkins, R., & Daly, J. (1988). Cognitive processes in communication. In R. P. Hawkins, J. Wiemann, & S. Pingree (Eds.), Advancing communication science: Merging mass and interpersonal (pp. 191–223). Newbury Park, CA: Sage.

    Google Scholar 

  • Kerres, M. (2000). Mediendidaktische analyse digitaler Medien im Unterricht. Computer und Unterricht, 37, 26–28.

    Google Scholar 

  • Klahr, D., Triona, L., & Williams, C. (2006). Hands-on what? The relative effectiviness of physical versus virtual materials in an engeneering design project by middle school children. Journal of Research in Science Teaching, 44, 183–203. doi:10.1002/tea.20152.

    Article  Google Scholar 

  • Lin, C.-Y., & Hu, R. (2003). Students’ understanding of energy flow and matter cycling in the context of the food chain, photosynthesis and respiration. International Journal of Science Education, 25, 1529–1544. doi:10.1080/0950069032000052045.

    Article  Google Scholar 

  • Lou, Y., Abrami, P. C., & d’Apollonia, S. (2001). Small group and individual learning with technology: a meta-analysis. Review of Educational Research, 71, 449–521. doi:10.3102/00346543071003449.

    Article  Google Scholar 

  • McClure, J., Sonak, B., & Suen, H. (1999). Concepì Map Assessment of Classroom Learning: Reliability, Validità and Logistical Practicality. Journal of Research in Science Teaching, 36, 475–492. doi:10.1002/(SICI)1098–2736(199904)36:4<475::AID-TEA5>3.0.CO;2-O.

    Article  Google Scholar 

  • Mintzes, J., Wandersee, J., & Novak, J. (2001). Assessing understanding in biology. Journal of Biological Education, 35, 118–124.

    Google Scholar 

  • Naveh-Benjamin, M., Lin, Y., & McKeachie, W. (1995). Inferring students’ cognitive structures and their development using the “Fill-in-the-Structure” (FITS) technique. In P. Nichols, F. Chipman, & R. Brennan (Eds.), Cognitive diagnostic assessment (pp. 279–304). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Novak, J. (1990). Concept mapping: A useful tool for science education. Journal of Research in Science Teaching, 10, 923–949.

    Google Scholar 

  • Novak, J. (1998). Learning, creating and using knowledge: Concept maps as facilative tools in schools and corporations. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Novak, J., & Gowin, D. (1984). Learning how to learn. New York: Cambridge University Press.

    Google Scholar 

  • Ruiz-Primo, M. (2000). On the use of concept maps as an assessment tool in science: What we have learned so far. Revista Electrónica de Investigación Educativa, 2, 29–52.

    Google Scholar 

  • Ruiz-Primo, M. (2004). Examining concept maps as an assement tool. In A. Cañas, J. Novak, & G. Fermín (Eds.), Concept maps: Theory, methodology, technology. Proceedings of the First International Conference on Concept Mapping (pp. 555–562). Pamplona: Universidad Pública de Navarra.

    Google Scholar 

  • Ruiz-Primo, M., & Shavelson, R. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33, 569–600. doi:10.1002/(SICI)1098-2736(199608)33:6<569::AID-TEA1>3.0.CO;2-M.

    Article  Google Scholar 

  • Ruiz-Primo, M., Schultz, S., Li, M., & Shavelson, R. (2001a). Comparison of the reliability and validity of scores from two concept-mapping techniques. Journal of Research in Science Teaching, 38, 260–278. doi:10.1002/1098–2736(200102)38:2<260::AID-TEA1005>3.0.CO;2-F.

    Article  Google Scholar 

  • Ruiz-Primo, M., Shavelson, R., Li, M., & Schutlz, S. (2001b). On the validity of cognitive interpretations of scores from alternative mapping techniques. Educational Assessment, 7, 99–141. doi:10.1207/S15326977EA0702_2.

    Article  Google Scholar 

  • Rye, J., & Rubba, P. (2002). Scoring Concept Maps: An Expert Map-Based Scheme Weighted for Relationships. School Science and Mathematics, 102, 33–44.

    Article  Google Scholar 

  • Schaal, S., & Bogner, F. (2005). Human visual perception—Learning at workstations. Journal of Biological Education, 40, 32–37.

    Google Scholar 

  • Schulmeister, R. (2002). Grundlagen hypermedialer Lernsysteme—Theorie, Didaktik, Design. München: Oldenbourg.

    Google Scholar 

  • Spiro, R., Feltovich, P. J., Jacobson, M. J., & Coulson, R. L. (1992). Cognitive flexibility, constructivism and hypertext: Random access instruction for advanced knowledge acquisition in ill-structured domains. In T. Duffy, & D. Jonassen (Eds.), Constructivism and Technology of Instruction (pp. 57–76). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Stahl, E., Glötzel, V., van Randenbourgh, A., Rottmann, J., Vogel, V., Kiffe, K., et al. (2002). Akzeptanz, Rollendifferenzierung und geschlechtsspezifisches Verhalten in Dyaden bei Botanischen Bestimmungsübungen: Ein Vergleich zweier Medien. IDB Münster – Berichte des Institutes für Didaktik der Biologie, 11, 77–90.

    Google Scholar 

  • Stevens, R., Wineburg, S., Herrenkohl, L. R., & Bell, P. (2005). The comparative understanding of school subjects: Past, present, and future research agenda. Review of Educational Research, 75, 125–157. doi:10.3102/00346543075002125.

    Article  Google Scholar 

  • Stoddart, T., Abrams, R., Gasper, E., & Canaday, D. (2000). Concept maps assessment in science inquiry learning—A report of methodology. International Journal of Education, 22, 1221–1246. doi:10.1080/095006900750036235.

    Article  Google Scholar 

  • Stübig, F., Bosse, D., & Ludwig, P. (2002). Zur Wirksamkeit von fächerübergreifendem Unterricht. Eine empirische Untersuchung der Sicht von Schülerinnen und Schülern. Kassel: Kassel University Press.

    Google Scholar 

  • Stracke, I. (2004). Einsatz computerbasierter Concept Maps zur Wissensdiagnose in der Chemie. Münster: Waxmann.

    Google Scholar 

  • Wang, H. (2003). Hypermedia: A brief review. Journal of Educational Computing, Design & Online Learning, 4, 1–20.

    Google Scholar 

  • Weidenmann, B. (2001). Lehr-Lernforschung und neue Medien. In B. Herzig (Ed.), Medien machen Schule. Grundlagen, Konzepte und Erfahrungen zu Medienbildung (pp. 89–1089). Bad Heilbrunn: Klinkardt.

    Google Scholar 

  • Weinberger, A., Reiserer, M., Ertl, B., Fischer, F., & Mandl, H. (2005). Facilitating collaborative knowledge construction in computer-mediated learning with structuring tools. In R. Bromme, F. Hesse, & H. Spada (Eds.), Barriers and biases in network-based knowledge communication in groups (pp. 15–38). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • White, R., & Gunstone, R. (1992). Probing understanding. London: The Falmer Press.

    Google Scholar 

  • Weinert, F. (1997). Lerntheorien und Instruktionsmodelle. In F. Weinert (Ed.), Psychologie des Lernens und der Instruktion (pp. 1–48). Göttingen: Hogrefe.

    Google Scholar 

  • Woloshyn, V., & Stockley, D. (1995). Helping students acquire belief-inconsistent and belief-consistent science facts: Comparisons between individual and dyad study using elaborative interrogation, self-selected study and repetitious-reading. Journal of Applied Cognitive Psychology, 9, 75–89. doi:10.1002/acp.2350090106.

    Article  Google Scholar 

  • Yildirim, Z., Ozden, M. Y., & Aksu, M. (2001). Comparison of hypermedia learning and traditional instruction on knowledge acquisition and retention. The Journal of Educational Research, 94, 207–214.

    Article  Google Scholar 

  • Yin, Y., Vanides, J., Ruiz-Primo, M., Ayala, C., & Shavelson, R. (2005). Comparison of two concept-mapping techniques: Implications for scoring, interpretation and use. Journal of Research in Science Teaching, 42, 166–184. doi:10.1002/tea.20049.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the cooperation of teachers and pupils involved in this study. We are very grateful to T. Rubitzko, C. Spannagel, M. Vogel for fruitful discussion. Furthermore, we thank W. Kienzle, M. Laukenmann, H.-M. Haase as well as C. Randler for valuable discussion and S. Tomkins for reading the manuscript. The study was part of the PhD thesis of S. Schaal which was supported by the University of Education, Ludwigsburg (PHL) and the Ministry of Education, Youth and Sports (MKJS) [State of Baden-Württemberg].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Schaal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaal, S., Bogner, F.X. & Girwidz, R. Concept Mapping Assessment of Media Assisted Learning in Interdisciplinary Science Education. Res Sci Educ 40, 339–352 (2010). https://doi.org/10.1007/s11165-009-9123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11165-009-9123-3

Keywords

Navigation