Abraham, M. R., Williamson, V. M., & Westbrook, S. L. (1994). A cross-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147–165.
Article
Google Scholar
Alparslan, C., Tekkaya, C., & Geban, Ö. (2003). Using the conceptual change instruction to improve learning. Journal of Biological Education, 37(3), 133–137.
Google Scholar
Alvermann, D. E., & Hague, S. A. (1989). Comprehension of counterintuitive science text: Effects of prior knowledge and text structure. Journal of Educational Research, 82(4), 197–202.
Google Scholar
Alvermann, D. E., & Hynd, C. R. (1989). Effects of prior knowledge activation modes and text structure on nonscience majors' comprehension of physics. Journal of Educational Research, 83, 97–102.
Google Scholar
Basili, P. A., & Standford, J. P. (1991). Conceptual change strategies and cooperative group work in chemistry. Journal of Research in Science Teaching, 28(3), 293–304.
Article
Google Scholar
Blanco, A., & Prieto, T. (1997). Pupils' views on how stirring and temperature affect the dissolution of a solid in a liquid: A cross-age study (12 to 18). International Journal of Science Education, 19(3), 303–315.
Article
Google Scholar
Cakir, O. S., Geban, O., & Yuruk, N. (2002). Effectiveness of conceptual change text-oriented instruction on students' understanding of cellular respiration concepts. Biochemistry and Molecular Biology Education, 30(4), 239–243.
Article
Google Scholar
Case, M. J., & Fraser, D. M. (1999). An investigation into chemical engineering students' understanding of the mole and the use of concrete activities to promote conceptual change. International Journal of Science Education, 21(12), 1237–1249.
Article
Google Scholar
Chambers, S. K., & Andre, T. (1997). Gender, prior knowledge, interest and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2), 107–123.
Article
Google Scholar
Chi, M. (1992). Conceptual change within and across ontological categories: Examples from learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science. Minneapolis, MN: University of Minnesota Press.
Google Scholar
Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1–49.
Google Scholar
Diakidoy, I. N., Kendeou, P., & Ioannides, C. (2003). Reading about energy: The effects of text structure in science learning and conceptual change. Contemporary Educational Psychology, 28, 335–356.
Article
Google Scholar
Dole, J. A. (2000). Readers, texts and conceptual change learning. Reading and Writing Quarterly, 16, 99–118.
Article
Google Scholar
Dole, J. A., & Niederhauser, D. D. (1990). Student's level of commitment to their naive conceptions and their conceptual change learning from texts. In J. Zutell & McCormick (Eds.), Literacy theory and research: Analyses from multiple paradigms. Chicago: National Reading Conference.
Google Scholar
Ebenezer, J. V. (2001). A hypermedia environment to explore and negotiate students' conceptions: Animation of the solution process of table salt. Journal of Science Education and Technology, 10(1), 73–92.
Article
Google Scholar
Ebenezer, J. V., & Erickson, G. L. (1996). Chemistry students' conceptions of solubility: A phenomenography. Science Education, 80(2), 181–201.
Article
Google Scholar
Ebenezer, J. V., & Gaskel, P. J. (1995). Relational conceptual change in solution chemistry. Science Education, 79(1), 1–17.
Article
Google Scholar
Fellows, N. J. (1994). A window into thinking: Using student writing to understand conceptual change in science learning. Journal of Research in Science Teaching, 31(9), 985–1001.
Article
Google Scholar
Gilbert, J. K., Osborne, R. J., & Fensham, P. J. (1982). Children's science and its consequences for teaching. Science Education, 66(4), 623–633.
Article
Google Scholar
Guzzetti, B. J. (2000). Learning counter-intuitive science concepts: What have we learned from over a decade of research. Reading and Writing Quarterly, 16, 89–98.
Article
Google Scholar
Guzzetti, B. J., Snyder, T. E., Glass, G. V., & Gamas, W. S. (1993). Promoting conceptual change in science: A comparative meta-analysis of instructional interventions from reading education and science education. Reading Research Quarterly, 28, 117–155.
Article
Google Scholar
Guzzetti, B. J., Hynd, C. R., Skeels, S. A., & Williams, W. O. (1995). Improving high school physics texts: Students speak out. Journal of Reading, 36, 656–663.
Google Scholar
Guzzetti, B. J., Williams, W. O., Skeels, S. A., & Wu, S. M. (1997). Influence of text structure on learning counter-intuitive physics concepts. Journal of Research in Science Teaching, 34, 700–719.
Article
Google Scholar
Haidar, A. H., & Abraham, M. R. (1991). A comparison of applied and theoretical knowledge of concepts based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919–938.
Google Scholar
Hewson, M. G., & Hewson, P. W. (1983). Effect of instruction using students' prior knowledge and conceptual change strategies on science learning. Journal of Research in Science Teaching, 20(8), 731–743.
Article
Google Scholar
Hewson, P. W., & Hewson, M. G. (1984). The role of conceptual conflict in concep-tual change and the design of science instruction. Instructional Science, 13, 1–13.
Article
Google Scholar
Hynd, C. (2001a). Refutational texts and the change process. International Journal of Educational Research, 35, 699–714.
Article
Google Scholar
Hynd, C. (2001b). Persuasion and its role in meeting educational goals. Theory Into Practice, 40(4), 270–277.
Article
Google Scholar
Hynd, C., & Alvermann, D. E. (1986). The role of refutation text in overcoming diffuculty with science concepts. Journal of Reading, 29(5), 440–446.
Google Scholar
Hynd, C. R., McWhorter, Y. J., Phares, V. L., & Suttles, C. W. (1994). The role of instructional variables in conceptual change in high school physics topics. Journal of Research in Science Teaching, 31(9), 933–946.
Article
Google Scholar
Hynd, C., Alvermann, D., & Qian, G. (1997). Preservice elementary school teachers' conceptual change about projectile motion: Refutation text, demonstration, affective factors and relevance. Science Education, 81, 1–27.
Article
Google Scholar
Janiuk, R. M. (1993). The process of learning chemistry. Journal of Chemical Education, 70(10), 828–829.
Google Scholar
Johnson, P. (1998). Progression in children's understanding of a basic particle theory: Longitudinal study. International Journal of Science Education, 20(4), 393–412.
Article
Google Scholar
Kokkotas, P., & Vlachos, I. (1998). Teaching the topic of the particulate nature of matter in prospective teachers' training course. International Journal of Science Education, 20(3), 291–303.
Article
Google Scholar
Lee, O., Eichinger, D. C., Anderson, C. W., Berkheimer, G. D., & Blakeslee, T. D. (1993). Changing middle school students' conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249–270.
Article
Google Scholar
Longden, K., Black, P., & Solomon, J. (1991). Children's interpretation of dissolving. International Journal of Science Education, 13(1), 59–68.
Article
Google Scholar
Maria, K., & MacGinite, W. (1987). Learning from texts that refute the reader's prior knowledge. Reading Research and Instruction, 26, 222–238.
Google Scholar
Mason, L. (2001). Introducing talk and writing for conceptual change: A classroom study. Learning and Instruction, 11, 305–329.
Article
Google Scholar
Mikkila-Erdmann, M. (2001). Improving conceptual change concerning photosynthesis through text design. Learning and Instruction, 11, 241–257.
Article
Google Scholar
Nakhleh, M. B. (1992). Why some students don't learn chemistry. Journal of Chemical Education, 69, 191–196.
Google Scholar
Niaz, M. (1998). A lakatosian conceptual change teaching strategy based on student ability to build models with varying degrees of conceptual understanding of chemical equilibrium. Science Education, 7, 107–127.
Article
Google Scholar
Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 489–508.
Article
Google Scholar
Petrucci, R. H., & Harwood, W. S. (1993). General chemistry: Principles and modern applications (6th ed.) New York: Macmillan Publishing Company.
Google Scholar
Pfundt, H., & Duit, R. (2000). Bibliography: Students' alternative frameworks and science. Kiel, Germany: IPN.
Google Scholar
Pınarbaşı, T., & Canpolat, N. (2003). Students' understanding of solution chemistry concepts. Journal of Chemical Education, 80(11), 1328–1332.
Article
Google Scholar
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211–227.
Article
Google Scholar
Prieto, T., Blanco, A., & Rodriguez, A. (1989). The ideas of 11 to 14-year-old students about the nature of solutions. International Journal of Science Education, 11(4), 451–463.
Article
Google Scholar
Salisbury-Glennon, J. D., & Stevens, R. J. (1999). Addressing preservice teachers' conceptions of motivation. Teaching and Teacher Education, 15, 741–752.
Article
Google Scholar
Slone, M., & Bokhurst, F. D. (1992). Children's understanding of sugar water solutions. International Journal of Science Education, 14(2), 221–235.
Article
Google Scholar
Smith, E. L., Blakeslee, T. D., & Anderson, C. W. (1993). Teaching strategies associated with conceptual change learning in science. Journal of Research in Science Teaching, 30(2), 111–126.
Article
Google Scholar
Stavy, R. (1990). Children's conception of changes in the state of matter: From liquid (or solid) to gas. Journal of Research in Science Teaching, 27(3), 247–266.
Article
Google Scholar
Stofflett, R. T., & Stoddart, T. (1994). The ability to understand and use conceptual change pedagogy as a function of prior content learning experience. Journal of Research in Science Teaching, 31(1), 31–51.
Article
Google Scholar
Strike, K., & Posner, G. (1992). A revisionist theory of conceptual change. In R. A. Duschl & R. J. Hamilton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147–176). Albany, NY: State University of New York.
Google Scholar
Sungur, S., Tekkaya, C., & Geban, Ö. (2001). The contribution of conceptual change texts accompanied by concept mapping to students' understanding of the human circulatory system. School Science and Mathematics, 101(2), 91–101.
Article
Google Scholar
Thorley, N. R., & Stofflett, R. T. (1996). Representation of the conceptual change model in science. Teacher Education, 80(3), 317–339.
Google Scholar
Treagust, D. F., Harrison, A. G., & Venville, G. J. (1996). Using an analogical teaching approach to engender conceptual change. International Journal of Science Education, 18(2), 213–229.
Article
Google Scholar
Wandersee, J., Mintzes, J., & Novak, J. D. (1994). Research on alternative conceptions in science. In D. Gabel (Ed.), Handbook of research on science teaching and learning (pp. 177–210). New York: Macmillan.
Google Scholar
Wang, T., & Andre, T. (1991). Conceptual change text versus traditional text application questions versus no questions in learning about electricity. Contemporary Educational Psychology, 16, 103–116.
Article
Google Scholar