Skip to main content
Log in

9-mesityl-10-methylacridinium perchlorate (Mes-Acr-Me+ClO4) as a novel metal-free donor–acceptor (D–A) photocatalyst: visible-light-induced access to tetrahydrobenzo[b]pyran scaffolds through a single-electron transfer (SET) pathway

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A green radical synthetic approach for the production of tetrahydrobenzo[b]pyran scaffolds, which utilizes a Knoevenagel–Michael cyclocondensation reaction of aldehydes, malononitrile, and dimedone, has been devised. This innovative technique has been designed to achieve environmental sustainability. A novel single-electron transfer photocatalyst was employed for the synthesis in an aqueous ethanol solution under an air atmosphere at room temperature and stimulated with blue LED illumination serving as a renewable energy source. The objective of this undertaking is to cultivate a metal-free donor–acceptor (D–A) photocatalyst that is highly affordable and universally accessible. 9-Mesityl-10-methylacridinium perchlorate (Mes-Acr-Me+ClO4) is recognized for its expeditious and effortless applicability, high efficiency in yielding products, low energy consumption, and commendable eco-friendliness. This capability facilitates the investigation into the temporal alterations of environmental and chemical constituents. A research inquiry was conducted with the primary objective of determining the turnover number and turnover frequency associated with tetrahydrobenzo[b]pyran scaffolds. Furthermore, the attainment of cyclization at a gram-scale level offers substantiation for its feasibility as a viable solution for industrial implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and Supporting Information file.

References

  1. F. Mohamadpour, Catal. Surv. Asia 27, 306 (2023)

    Article  CAS  Google Scholar 

  2. F. Mohamadpour, Sci. Rep. 13, 13142 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. F. Mohamadpour, J. Chem. Sci. 135, 74 (2023)

    Article  CAS  Google Scholar 

  4. F. Mohamadpour, RSC Adv. 13, 2514 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. R. Bhanja, S.K. Bera, P. Mal, Chem. Comm. 59, 4455 (2023)

    Article  CAS  PubMed  Google Scholar 

  6. S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N.V. Tkachenko, H. Lemmetyinen, J. Am. Chem. Soc. 126, 1600 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. M.M. Brasholz, Acridinium dyes and quinones in photocatalysis in science of synthesis photocatalysis in organic synthesis, ed. by B. Kçnig (Georg Thieme Verlag, Stuttgart, 2019)

  8. A. Joshi-Pangu, F. Lévesque, H.G. Roth, S.F. Oliver, L.C. Campeau, D. Nicewicz, D.A. DiRocco, J. Org. Chem. 81, 7244 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. A. Tlili, S. Lakhdar, Angew. Chem. 133, 19678 (2021)

    Article  Google Scholar 

  10. F. Mohamadpour, J. Saudi Chem. Soc. 24, 636 (2020)

    Article  CAS  Google Scholar 

  11. F. Mohamadpour, J. Photochem. Photobiol. A Chem. 407, 113041 (2021)

    Article  CAS  Google Scholar 

  12. F. Mohamadpour, Monatsh. Chem. 152, 507 (2021)

    Article  CAS  Google Scholar 

  13. N. Foloppe, L.M. Fisher, R. Howes, A. Potter, A.G.S. Robertson, A.E. Surgenor, Bioorg. Med. Chem. 14, 4792 (2006)

    Article  CAS  PubMed  Google Scholar 

  14. S.C. Kuo, L.J. Huang, H. Nakamura, J. Med. Chem. 27, 539 (1984)

    Article  CAS  PubMed  Google Scholar 

  15. J.L. Wang, D. Liu, Z.J. Zheng, S. Shan, X. Han, S.M. Srinivasula, C.M. Croce, E.S. Alnemri, Z. Huang, Proc. Natl. Acad. Sci. U.S.A. 97, 7124 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. V.K. Ahluwalia, A. Dahiya, V. Garg, Indian J. Biochem. Biophys. 36, 88 (1997)

    Google Scholar 

  17. G.P. Ellis, The chemistry of heterocyclic compounds, in Chromenes, Chromanones, and Chromones, ed. by A. Weissberger, E. C. Taylor (John Wiley, New York, 1977)

  18. D. Heber, C. Heers, U. Ravens, Pharmazie 48, 537 (1993)

    CAS  PubMed  Google Scholar 

  19. W.J. Coates, Chem. Abstr. 113, 40711 (1990)

    Google Scholar 

  20. N. Fokialakis, P. Magiatis, L. Chinou, S. Mitaka, F. Tillequin, Chem. Pharm. Bull. 50, 413 (2002)

    Article  CAS  Google Scholar 

  21. P. Beagley, M.A.L. Blackie, K. Chibale, C. Clarkson, R. Meijboom, J.R. Moss, P. Smith, H. Su, Dalton Trans. 15, 3046 (2003)

    Article  Google Scholar 

  22. J.G. Cannon, R.R. Khonji, J. Med. Chem. 18, 110 (1975)

    Article  CAS  PubMed  Google Scholar 

  23. C. Biot, G. Glorian, L.A. Maciejewski, J.S. Brocard, O. Domarle, G. Blampain, G. Blampain, P. Blampain, A.J. Georges, H. Abessolo, D. Dive, J. Lebibi, J. Med. Chem. 40, 3715 (1997)

    Article  CAS  PubMed  Google Scholar 

  24. E.A.A. Hafez, M.H. Elnagdi, A.G.A. Elagamey, F.M.A.A. EL-Taweel, Heterocycles 26, 903 (1987)

    Article  CAS  Google Scholar 

  25. T.A. Bayer, S. Schafer, H. Breyh, O. Breyhan, C. Wirths, G.A. Treiber, Clin. Neuropathol. 25, 163 (2006)

    CAS  PubMed  Google Scholar 

  26. M.A. Bodaghifard, M. Solimannejad, S. Asadbegi, S. Dolatabadifarahani, Res. Chem. Intermed. 42, 1165 (2016)

    Article  CAS  Google Scholar 

  27. S. Banerjee, A. Horn, H. Khatri, G. Sereda, Tetrahedron Lett. 52, 1878 (2011)

    Article  CAS  Google Scholar 

  28. Z. Zhou, Y. Zhang, X. Hu, Polycycl. Aromat. Compd. 37, 39 (2017)

    Article  CAS  Google Scholar 

  29. K. Niknam, N. Borazjani, R. Rashidian, A. Jamali, Chinese J. Catal. 34, 2245 (2013)

    Article  CAS  Google Scholar 

  30. R.S. Bhosale, C.V. Magar, K.S. Solanke, S.B. Mane, S.S. Choudhary, R.P. Pawar, Synth. Commun. 37, 4353 (2007)

    Article  CAS  Google Scholar 

  31. F. Mohamadpour, Front. Chem. 10, 934781 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. B. Maleki, S. Sedigh Ashrafi, RSC Adv. 4, 42873 (2014)

  33. M.A. Zolfigol, M. Safaiee, N. Bahrami-Nejad, New J. Chem. 40, 5071 (2016)

    Article  CAS  Google Scholar 

  34. S. Banerjee, A. Saha, New J. Chem. 37, 1 (2013)

    Article  Google Scholar 

  35. F. Mohamadpour, Curr. Res. Green Sustain. Chem. 6, 100356 (2023)

    Article  CAS  Google Scholar 

  36. B. Maleki, H. Eshghi, M. Barghamadi, N. Nasiri, A. Khojastehnezhad, S. Sedigh Ashrafi, O. Pourshiani, Res. Chem. Intermed. 42, 3071 (2016)

    Article  CAS  Google Scholar 

  37. F. Mohamadpour, Polycycl. Aromat. Compd. 41, 160 (2021)

    Article  CAS  Google Scholar 

  38. R. Rahnamaf, L. Moradi, M. Khoobi, Res. Chem. Intermed. 46, 2109 (2020)

    Article  Google Scholar 

  39. F. Mohamadpour, Org. Prep. Proced. Int. 54, 306 (2022)

    Article  CAS  Google Scholar 

  40. A. Khazaei, F. Gholami, V. Khakyzadeh, A.R. Moosavi-Zare, J. Afsar, RSC Adv. 5, 14305 (2015)

    Article  CAS  Google Scholar 

  41. B. Eshtehardian, M. Rouhani, Z. Mirjafary, J. Iran. Chem. Soc. 17, 469 (2020)

    Article  CAS  Google Scholar 

  42. S.F. Hojati, N. MoeiniEghbali, S. Mohamadi, T. Ghorbani, Org. Prep. Proced. Int. 50, 408 (2018)

    Article  CAS  Google Scholar 

  43. F. Mohamadpour, J. Taiwan Inst. Chem. Eng. 129, 52 (2021)

    Article  CAS  Google Scholar 

  44. D. Tahmassebi, J.A. Bryson, S.I. Binz, Synth. Commun. 41, 2701 (2011)

    Article  CAS  Google Scholar 

  45. M. Pramanik, K. Choudhuri, A. Mathuri, P. Mal, Chem Comm. 56, 10211 (2020)

    Article  CAS  PubMed  Google Scholar 

  46. H. Kotani, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 126, 15999 (2004)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is financially supported by Iran National Science Foundation (INSF) (No. 4015618), financially supported by Iran’s National Elites Foundation (No. 4015618), and also, Shiraz University of Medical Sciences.

Funding

The authors received no specific funding for this work.

Author information

Authors and Affiliations

Authors

Contributions

F.M. and H.K. and Sh.Ch. and A.M.A. wrote the main manuscript text and F.M. and H.K. and Sh.Ch. and A.M.A. prepared figures 1-4. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Farzaneh Mohamadpour, Shreeshivadasan Chelliapan or Ali Mohammad Amani.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 288 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamadpour, F., Kamyab, H., Chelliapan, S. et al. 9-mesityl-10-methylacridinium perchlorate (Mes-Acr-Me+ClO4) as a novel metal-free donor–acceptor (D–A) photocatalyst: visible-light-induced access to tetrahydrobenzo[b]pyran scaffolds through a single-electron transfer (SET) pathway. Res Chem Intermed (2024). https://doi.org/10.1007/s11164-024-05304-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11164-024-05304-7

Keywords

Navigation