Skip to main content
Log in

Nano-SiO2@nPr@DPyE-Ni: a novel nanocatalyst for the rapid production of symmetric di-aryl sulfides and pyrazolones

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Initially, a new organometallic catalyst with nano-silica gel substrate and Ni active center, namely nano-SiO2@nPr@DPyE-Ni was produced, and its properties were thoroughly debated. It was then applied with excellent performance to produce symmetric di-aryl sulfides (14 entries, 78–98%, 20–150 min, EtOH, and 70 °C), and 2-aryl-5-methyl-2,3-dihydro-1H-3-pyrazolones (12 entries, 91–98%, 2–4 min, solvent-free, and r.t). In both production routes, the nanocatalyst was recyclable and reusable for more than seven runs, and its heterogeneous nature was checked and confirmed through the recycling results, hot filtration test, and ICP-OES (coupled plasma optical emission spectroscopy) method.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of data and materials

All data of this work have been reported in the manuscript and supplementary material.

References

  1. V.N. Mahire, G.P. Patil, A.B. Deore, P.G. Chavan, H.D. Jirimali, P.P. Mahulikar, Res. Chem. Intermed. 44, 5801 (2018)

    Article  CAS  Google Scholar 

  2. A. Fihri, D. Cha, M. Bouhrara, N. Almana, V. Polshettiwar, Chemsuschem 5, 85 (2012)

    Article  CAS  PubMed  Google Scholar 

  3. R.E. Morsi, R.S. Mohamed, R. Soc, Open Sci. 5, 172021 (2018)

    Google Scholar 

  4. Q. Li, T. Zhou, H. Yang, ACS Catal. 5, 2225 (2015)

    Article  CAS  Google Scholar 

  5. L. Wei, S. Yan, H. Wang, H. Yang, NPG Asia Mater. 10, 899 (2018)

    Article  CAS  Google Scholar 

  6. M. Rezaei, K. Amani, K. Darvishi, Catal. Commun. 91, 38 (2017)

    Article  CAS  Google Scholar 

  7. M.A. Abarghooei, R. Mohebat, Z. Karimi-Jaberi, M.H. Mosslemin, Catal. Commun. 105, 59 (2018)

    Article  CAS  Google Scholar 

  8. C. Wang, D. Astruc, Prog. Mater. Sci. 94, 306 (2018)

    Article  CAS  Google Scholar 

  9. H. Huang, X. Wang, E. Tervoort, G. Zeng, T. Liu, X. Chen, A. Sologubenko, M. Niederberger, ACS Nano 12, 2753 (2018)

    Article  CAS  PubMed  Google Scholar 

  10. H. Veisi, A. Nikseresht, A. Rostami, S. Hemmati, Res. Chem. Intermed. 45, 507 (2019)

    Article  CAS  Google Scholar 

  11. Z. Shahamat, F. Nemati, A. Elhampour, Res. Chem. Intermed. 44, 6649 (2018)

    Article  CAS  Google Scholar 

  12. H. Filian, A. Ghorbani-Choghamarani, E. Tahanpesar, J. Iran. Chem. Soc. 16, 2673 (2019)

    Article  CAS  Google Scholar 

  13. B. Tahmasbi, A. Ghorbani-Choghamarani, New J. Chem. 43, 14485 (2019)

    Article  CAS  Google Scholar 

  14. A. Ghorbani-Choghamarani, Z. Taherinia, M. Mohammadi, Environ. Technol. Innovation. 24, 102050 (2021)

    Article  CAS  Google Scholar 

  15. S. Pal, V. Chatare, M. Pal, Curr. Org. Chem. 15, 782 (2011)

    Article  CAS  Google Scholar 

  16. H. Filian, A. Kohzadian, M. Mohammadi, A. Ghorbani-Choghamarani, A. Karami, Appl. Organomet. Chem. 34, e5579 (2020)

    Article  CAS  Google Scholar 

  17. C.R. Nathaniel, R. Dhanya, P.V. Saranya, G. Anilkumar, ChemistrySelect 7, e202202763 (2022)

    Article  CAS  Google Scholar 

  18. C. Parmeggiani, C. Matassini, F. Cardona, Green Chem. 19, 2030 (2017)

    Article  CAS  Google Scholar 

  19. A. Yusuf, C. Snape, J. He, H. Xu, C. Liu, M. Zhao, G.Z. Chen, B. Tang, C. Wang, J. Wang, S.N. Behera, Catal. Rev. 59, 189 (2017)

    Article  CAS  Google Scholar 

  20. Y. Wang, J. Li, Z. Wei, J. Mater. Chem. A. 6, 8194 (2018)

    Article  CAS  Google Scholar 

  21. M.A. Abdelkareem, T. Wilberforce, K. Elsaid, E.T. Sayed, E.A. Abdelghani, A.G. Olabi, Int. J. Hydrogen Energy 46, 23529 (2021)

    Article  CAS  Google Scholar 

  22. S.V. Subramaniam, V.K. Dharmalingam, A. Bhattacharya, S. Peruncheralathan, Org. Lett. 25, 8225 (2023)

    Article  CAS  PubMed  Google Scholar 

  23. F.S. Han, Chem. Soc. Rev. 42, 5270 (2013)

    Article  CAS  PubMed  Google Scholar 

  24. L.F. Tietze, A. Modi, Med. Res. Rev. 20, 304 (2000)

    Article  CAS  PubMed  Google Scholar 

  25. F.J. Liu, T.T. Sun, Y.G. Yang, C. Huang, X.B. Chen, RSC adv. 8, 12635 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. B. Jiang, S.J. Tu, P. Kaur, W. Wever, G. Li, J. Am. Chem. Soc. 26, 11660 (2009)

    Article  Google Scholar 

  27. F.A. Pasha, M. Muddassar, M.M. Neaz, S.J. Cho, J. Mol. Graphics Modell. 28, 54 (2009)

    Article  CAS  Google Scholar 

  28. D. Castagnolo, F. Manetti, M. Radi, B. Bechi, M. Pagano, A. De Logu, R. Meleddu, M. Saddi, M. Botta, Bioorg. Med. Chem. 17, 5716 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. S. Mor, R. Punia, M. Khatri, D. Kumar, A. Kumar, D.K. Jindal, N. Singh, R. Sharma, M. Ahmed, S. Shukla, K. Jakhar, J. Mol. Struct. 1296, 136759 (2024)

    Article  CAS  Google Scholar 

  30. F.A. Ragab, N.M. Abdel-Gawad, H.H. Georgey, M.F. Said, Chem. Pharm. Bull. 61, 834 (2013)

    Article  Google Scholar 

  31. F. Moreau, N. Desroy, J.M. Genevard, V. Vongsouthi, V. Gerusz, G. Le Fralliec, C. Oliveira, S. Floquet, A. Denis, S. Escaich, K. Wolf, M. Busemann, A. Aschenbsenner, Bioorg. Med. Chem. Lett. 18, 4022 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. I. Shaikh, R.N. Jadeja, R. Patel, V. Mevada, V.K. Gupta, J. Mol. Struct. 1232, 130051 (2021)

    Article  CAS  Google Scholar 

  33. C.E. Rosiere, M.I. Grossman, Science 113, 651 (1951)

    Article  CAS  PubMed  Google Scholar 

  34. D.M. Bailey, P.E. Hansen, A.G. Hlavac, E.R. Baizman, J. Pearl, A.F. Defelice, M.E. Feigenson, J. Med. Chem. 28, 256 (1985)

    Article  CAS  PubMed  Google Scholar 

  35. Z. Zhao, X. Dai, C. Li, X. Wang, J. Tian, Y. Feng, J. Xie, C. Ma, Z. Nie, P. Fan, M. Qian, Eur. J. Med. Chem. 186, 111893 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. Y. Zhang, K.C. Ngeow, J.Y. Ying, Org. Lett. 9, 3495 (2007)

    Article  CAS  PubMed  Google Scholar 

  37. I.P. Beletskaya, V.P. Ananikov, Chem. Rev. 111, 1596 (2011)

    Article  CAS  PubMed  Google Scholar 

  38. L. Chen, A. Noory Fajer, Z. Yessimbekov, M. Kazemi, M. Mohammadi, J. Sulfur Chem. 40, 451 (2019)

    Article  CAS  Google Scholar 

  39. M. Lakshman, Journal of Synthetic. Chemistry 1, 148 (2023)

    Google Scholar 

  40. C.T. Barce Ferro, B.F. Dos Santos, C.D.G. da Silva, G. Brand, B.A.L. da Silva, N.L. de Campos Domingues, Curr. Org. Synth. 17, 192 (2020)

    Article  PubMed  Google Scholar 

  41. L. Rout, T.K. Sen, T. Punniyamurthy, Angew. Chem. Int. Ed. 46, 5583 (2007)

    Article  CAS  Google Scholar 

  42. M. Moorthy, A. Govindaraj, B. Madheswaran, B. Kannan, R. Rangappan, ChemistrySelect 1, 4833 (2016)

    Article  CAS  Google Scholar 

  43. D. Giuliani, A. Ottani, D. Zaffe, M. Galantucci, F. Strinati, R. Lodi, S. Guarini, Neurobiol. Learn. Mem. 104, 82 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. L. Argueta-Figueroa, O. Martinez-Alvarez, J. Santos-Cruz, R. Garcia-Contreras, L.S. Acosta-Torres, J. De la Fuente-Hernandez, M.C. Arenas-Arrocena, Mater. Sci. Eng. C 76, 1305 (2017)

    Article  CAS  Google Scholar 

  45. M. Burkitbayev, N. Bachilova, M. Kurmanbayeva, K. Tolenova, N. Yerezhepova, M. Zhumagul, A. Mamurova, B. Turysbek, G. Demeu, Saudi. J. Biol. Sci. 28, 891 (2021)

    CAS  Google Scholar 

  46. M. Nikoorazm, A. Ghorbani-Choghamaranai, M. Khanmoradi, P. Moradi, J. Porous Mater. 25, 1831 (2018)

    Article  CAS  Google Scholar 

  47. Y.Q. Almajidi, M. Ubaidullah, B. Pandit, A.K. Kareem, R.M. Romero-Parra, A. Bobirjon, W.R. Kadhum, A.M. Al-Erjan, M. Abosaooda, A.K. Mahmoud, RSC adv. 13, 11393 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. N.A. Barakat, B. Kim, H.Y. Kim, J. Phys. Chem. C 113, 531 (2009)

    Article  CAS  Google Scholar 

  49. A. Ghorbani-Choghamarani, Z. Seydyosefi, B. Tahmasbi, Appl. Organomet. Chem. 32, e4396 (2018)

    Article  Google Scholar 

  50. A. Rostami, A. Rostami, M. Ghaderi, S. Gholinejad, Gheisarzadeh. Synthesis. 49, 5025 (2017)

    Article  CAS  Google Scholar 

  51. A. Ziarati, J. Safaei-Ghomi, S. Rohani, Ultrason. Sonochem. 20, 1069 (2013)

    Article  CAS  PubMed  Google Scholar 

  52. H. Goudarziafshar, A.R. Moosavi-Zare, Z. Jalilian, M. Abdolmaleki, J. Chin. Chem. Soc. 66, 529 (2019)

    Article  CAS  Google Scholar 

  53. Z. Yousofvand, M. Hajjami, F. Ghorbani, R. Ghafouri-Nejad, J. Porous Mater. 25, 1349 (2018)

    Article  CAS  Google Scholar 

  54. P. Zhao, H. Yin, H. Gao, C. Xi, J. Org. Chem. 78, 5001 (2013)

    Article  CAS  PubMed  Google Scholar 

  55. A. Ghorbani-Choghamarani, Z. Taherinia, RSC Adv. 6, 59410 (2016)

    Article  CAS  Google Scholar 

  56. X. Ku, H. Huang, H. Jiang, H. Liu, J. Comb. Chem. 11, 338 (2009)

    Article  PubMed  Google Scholar 

  57. P. Gunasekaran, S. Perumal, P. Yogeeswari, D. Sriram, Eur. J. Med. Chem. 46, 4530 (2011)

    Article  CAS  PubMed  Google Scholar 

  58. J. Safaei-Ghomi, E. Afkhami, H. Shahbazi-Alavi, A. Ziarati, Iran. J. Catal. 5, 321 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to acknowledge the Takin Shimi Sepanta Industries Co, Ilam, Iran.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

H.A synthesized several di-aryl sulfide derivatives (1a–7a) and edited the paper. C.R.B synthesized several pyrazolone derivatives (1b–6b) and designed the graphical abstract. P.B synthesized several di-aryl sulfide derivatives (8a–14a). A.H.R synthesized several di-aryl sulfides derivatives (7b–12b). B.D.O optimized reaction conditions for the preparation of pyrazolone derivatives. A.H.A optimized reaction conditions for the preparation of di-aryl sulfides. M.T.Q characterized the skeleton of the catalyst via HRTEM, FESEM, and XRD analyses. A.K characterized the skeleton of the catalyst by ICP, EDS, and elemental mapping analyses. Y.F.M characterized the skeleton of the catalyst through TGA, FTIR, and BET analyses. M.S.G.N fabricated the catalyst and wrote the paper.

Corresponding author

Correspondence to Maryam Sadat Ghorayshi Nejad.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlMohamadi, H., Rodriguez-Benites, C., Bansal, P. et al. Nano-SiO2@nPr@DPyE-Ni: a novel nanocatalyst for the rapid production of symmetric di-aryl sulfides and pyrazolones. Res Chem Intermed (2024). https://doi.org/10.1007/s11164-024-05296-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11164-024-05296-4

Keywords

Navigation