Skip to main content
Log in

Synthesis, characterization and mechanism of enhanced visible light photocatalytic activity of TiO2-WO3 nanocomposites

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Titanium dioxide (TiO2) is a wide bandgap semiconductor which shows excellent photocatalytic activity under UV irradiation. To extend the light absorption efficiency to visible region, TiO2 can be coupled with other semiconductors to form nanocomposites. In the present study, photocatalytic efficiency of TiO2-WO3 nanocomposites against methylene blue dye was investigated. TiO2-WO3 nanocomposites with different W/Ti ratio were synthesized by sol–gel method. The samples were characterized using X-ray diffraction (XRD), High resolution transmission spectroscopy (HR-TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Brunauer, Emmett and Teller surface area analyzer (BET), UV–Vis diffuse reflectance spectra (DRS) and zeta potential analyzer. XRD and HR-TEM analysis confirmed the crystallinity of nanocomposites. XPS analysis confirmed the phase purity of the nanocomposite. The specific surface area and pore radius were calculated from BET analysis. The energy bandgap of all the samples were calculated from UV–Vis DRS analysis. The optical band gap of the nanocomposites was less compared to that of pure TiO2. This decrease in band gap has resulted in extending the photocatalytic activity to visible range. Optimum W/Ti ratio for obtaining maximum photocatalytic efficiency was arrived at and its mechanism was studied in detail using zeta potential measurements and scavenging tests. Reusability of the catalyst was also confirmed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

The data used to support the findings of this study are included within the article.

References

  1. I. Ali, M. Suhail, Z.A. Alothman, A. Alwarthan, RSC Adv. 8, 30125 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. V. Wellia, Y. Kusumawati, and M. Amal, Nanocomp. Vis. Light. Photocatal. (2017)

  3. F. Imtiaz, J. Rashid, and M. Xu, Concepts Semicond. Photocatal. (2019)

  4. H. E. A. F. A. H. El Nazer and S. T. Gaballah, 41 (2017).

  5. N. Bai, X. Liu, Z. Li, X. Ke, K. Zhang, Q. Wu, J. Sol Gel Sci. Technol. 99, 92 (2021)

    Article  CAS  Google Scholar 

  6. N. L. Reddy, S. Emin, V. D. Kumari, and S. Muthukonda Venkatakrishnan, Ind. Eng. Chem. Res. 57, 568 (2018)

  7. T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Langmuir 18, 7777 (2002)

    Article  CAS  Google Scholar 

  8. S. Prabhu, A. Nithya, S. Chandra Mohan, and K. Jothivenkatachalam, Mater. Sci. Forum 781, 63 (2014)

  9. L.F. Paula, M. Hofer, V.P.B. Lacerda, D.W. Bahnemann, A.O.T. Patrocinio, Photochem. Photobiol. Sci. 18, 2469 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. Y.R. Do, W. Lee, K. Dwight, A. Wold, J. Solid State Chem. 108, 198 (1994)

    Article  CAS  Google Scholar 

  11. A.K.L. Sajjad, S. Shamaila, B. Tian, F. Chen, J. Zhang, Appl. Catal. B Environ. 91, 397 (2009)

    Article  CAS  Google Scholar 

  12. S. Anandan, T. Sivasankar, T. Lana-Villarreal, Ultrason. Sonochem. 21, 1964 (2014)

    Article  CAS  PubMed  Google Scholar 

  13. K. Lv, J. Li, X. Qing, W. Li, Q. Chen, J. Hazard. Mater. 189, 329 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. E. Falletta, C. L. Bianchi, F. Morazzoni, A. Polissi, F. Di Vincenzo, and I. R. Bellobono, Catalysts 12, (2022)

  15. L. Zhang, M. Qin, W. Yu, Q. Zhang, H. Xie, Z. Sun, Q. Shao, X. Guo, L. Hao, Y. Zheng, Z. Guo, J. Electrochem. Soc. 164, H1086 (2017)

    Article  CAS  Google Scholar 

  16. V. Puddu, R. Mokaya, and G. Li Puma, Chem. Commun. 4749 (2007)

  17. Y. Hua, J. Xiao, Q. Zhang, C. Cui, and C. Wang, Nanoscale Res. Lett. 13, (2018)

  18. S. Fatima, T. Munawar, M.S. Nadeem, F. Mukhtar, S.A. Khan, M. Koc, F. Iqbal, Opt. Mater. (Amst). 136, 113397 (2023)

    Article  CAS  Google Scholar 

  19. M. S. Gopika, S. Jayasudha, and P. B. Nair, Bull. Mater. Sci. 45, (2022)

  20. B. D. Cullity, Elements of X-Ray Diffraction (1978)

  21. T. Munawar, M.S. Nadeem, F. Mukhtar, S. Manzoor, M.N. Ashiq, S. Batool, M. Hasan, F. Iqbal, Adv. Powder Technol. 33, 103451 (2022)

    Article  CAS  Google Scholar 

  22. F. Riboni, L.G. Bettini, D.W. Bahnemann, E. Selli, Catal. Today 209, 28 (2013)

    Article  CAS  Google Scholar 

  23. J. Wang, B. Liu, K. Nakata, Cuihua Xuebao/Chinese. J. Catal. 40, 403 (2019)

    CAS  Google Scholar 

  24. A.V. Emeline, A.V. Rudakova, R.V. Mikhaylov, K.M. Bulanin, D.W. Bahnemann, Catalysts 11, 1 (2021)

    Article  Google Scholar 

  25. D.A.H. Hanaor, I. Chironi, I. Karatchevtseva, G. Triani 111, 149 (2012)

    CAS  Google Scholar 

  26. Y. Ren, L. Zhao, Y. Zou, L. Song, N. Dong, J. Wang, Nanomaterials 9, 1 (2019)

    Google Scholar 

  27. A. León, P. Reuquen, C. Garín, R. Segura, P. Vargas, P. Zapata, P.A. Orihuela, Appl. Sci. 7, 1 (2017)

    Article  Google Scholar 

  28. H. N. Koysuren, Catalysts 8, (2018)

  29. J. Du, Q. Wu, S. Zhong, X. Gu, J. Liu, H. Guo, W. Zhang, H. Peng, J. Zou, J. Rare Earths 33, 148 (2015)

    Article  CAS  Google Scholar 

  30. S. Sardar, T. Munawar, F. Mukhtar, M. S. Nadeem, S. A. Khan, M. Koc, S. Manzoor, M. N. Ashiq, and F. Iqbal, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 288, 116151 (2023)

  31. Y. Deng, T. Wang, L. Zhu, A.P. Jia, J.Q. Lu, M.F. Luo, Appl. Surf. Sci. 442, 613 (2018)

    Article  CAS  Google Scholar 

  32. T. Zhao, R. Qian, G. Zhou, Y. Wang, W.I. Lee, J.H. Pan, Chemosphere 263, 128344 (2021)

    Article  CAS  PubMed  Google Scholar 

  33. W. Xie, R. Li, Q. Xu, Sci. Rep. 8, 1 (2018)

    Google Scholar 

  34. T. Xu, H. Wu, K. Cui, Q. Zhao, J. Huang, L. Wei, Z. Ma, S.N. Appl, Sci. 1, 1 (2019)

    Google Scholar 

  35. J.H. Pan, W.I. Lee, Chem. Mater. 18, 847 (2006)

    Article  CAS  Google Scholar 

  36. L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Appl. Catal. B Environ. 94, 142 (2010)

    Article  CAS  Google Scholar 

  37. T. Li, M. Aadil, S. Zulfiqar, A. Anwar, S. M. Yakout, N. M. Panduro-Tenazoa, and S. Mubeen, Ceram. Int. (2023)

  38. A.S. Cherevan, L. Deilmann, T. Weller, D. Eder, R. Marschall, A.C.S. Appl, Energy Mater. 1, 5787 (2018)

    CAS  Google Scholar 

  39. P. Kubelka, J. Opt. Soc. Am. 38, 330 (1948)

    Google Scholar 

  40. E. Kusiak-Nejman, A. Sienkiewicz, A. Wanag, P. Rokicka-Konieczna, A.W. Morawski, Catalysts 11, 1 (2021)

    Article  Google Scholar 

  41. J.H. Kim, F. Nishimura, S. Yonezawa, M. Takashima, J. Fluor. Chem. 144, 165 (2012)

    Article  CAS  Google Scholar 

  42. S. Pulvin, MOJ Toxicol. 1, (2015)

  43. N. Mandzy, E. Grulke, T. Druffel, Powder Technol. 160, 121 (2005)

    Article  CAS  Google Scholar 

  44. I. Khan, K. Saeed, I. Zekker, B. Zhang, A. H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L. A. Shah, T. Shah, and I. Khan, Water (Switzerland) 14, (2022)

  45. B. Ma, J. Kim, T. Wang, J. Li, K. Lin, W. Liu, S. Woo, RSC Adv. 5, 79815 (2015)

    Article  CAS  Google Scholar 

  46. P. Salvador, C. Gutierrez, Chem. Phys. Lett. 86, 131 (1982)

    Article  CAS  Google Scholar 

  47. S.A. Singh, G. Madras, Sep. Purif. Technol. 105, 79 (2013)

    Article  CAS  Google Scholar 

  48. L. Yang, Z. Si, D. Weng, Y. Yao, Appl. Surf. Sci. 313, 470 (2014)

    Article  CAS  Google Scholar 

  49. W.S.A. El-Yazeed, A.I. Ahmed, Inorg. Chem. Commun. 105, 102 (2019)

    Article  Google Scholar 

  50. B. Basumatary, R. Basumatary, A. Ramchiary, D. Konwar, Chemosphere 286, 131848 (2022)

    Article  CAS  PubMed  Google Scholar 

  51. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)

    Article  CAS  Google Scholar 

  52. F. Opoku, K. K. Govender, C. G. C. E. van Sittert, and P. P. Govender, Adv. Sustain. Syst. 1 (2017)

  53. M. Shahid, N. Tauseef, M. Faisal, M. Abdul, and W. Rabbani, Appl. Phys. A 1 (2023)

Download references

Acknowledgements

We would like to acknowledge DST-SAIF, Cochin and CLIF, the University of Kerala for instrumentation support. Gopika M S acknowledges Junior Research Fellowship [AcEVI(4)/37275/JRF/2019] from the University of Kerala. We thank Adithya A V, CSIR- NIIST for the zeta potential measurements.

Funding

Author Gopika M S received Junior Research Fellowship from the University of Kerala [AcEVI(4)/37275/JRF/2019].

Author information

Authors and Affiliations

Authors

Contributions

MSG: Conceptualization, methodology, software, formal analysis, investigation, resources, data curation, writing-original draft. SJ: Investigation, validation, methodology, resources, writing—review and editing. PBN: Conceptualization, investigation, validation, methodology, writing—review and editing, visualisation, supervision.

Corresponding author

Correspondence to Prabitha B. Nair.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopika, M.S., Jayasudha, S. & Nair, P.B. Synthesis, characterization and mechanism of enhanced visible light photocatalytic activity of TiO2-WO3 nanocomposites. Res Chem Intermed 49, 3847–3866 (2023). https://doi.org/10.1007/s11164-023-05074-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05074-8

Keywords

Navigation