Skip to main content
Log in

The hydroxyapatite nanowires as high loading carrier for immobilization of dextranase by crosslinking method

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this work, dextranase was immobilized on the surface of hydroxyapatite nanowires (HAPNWs) through covalent cross-linking method. The prepared HAPNWs-NH2-dextranase was characterized by FE-SEM, XRD, TGA and FT-IR spectroscopy. The results show that the dextranase was successfully immobilized on HAPNWs by covalent cross-linking method. The properties of HAPNWs-NH2-dextranase were studied and compared with free dextranase, such as catalytic activity, kinetic constants, thermal stability and pH stability. The loading capacity, storage stability and reusability of the immobilized enzymes were investigated. HAPNWs-NH2-dextranase demonstrated better enzyme activity at higher temperatures (92.28% vs 33.08% at 70 °C) and higher pH stability (93.17% vs 57.78% at pH 7.0) than free dextranase. The loading capacity of dextranase on HAPNWs-NH2-dextranase can reach up to 868.2 mg g−1. HAPNWs-NH2-dextranase retained 83.38% of its initial activity after 12 cycles, indicating that the HAPNWs-NH2-dextranase could have great performance in industry fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Figure. 1
Figure. 2
Figure. 3
Figure. 4
Figure. 5
Figure. 6
Figure. 7
Figure. 8
Figure. 9

Similar content being viewed by others

References

  1. P.C. Naha, Y. Liu, G. Hwang, Y. Huang, S. Gubara, V. Jonnakuti, A. Simon-Soro, D. Kim, L. Gao, H. Koo, D.P. Cormode, ACS Nano 13, 4960 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. S.A. Belorkar, A.K. Gupta, AMB Expr. 6, 82 (2016)

    Article  Google Scholar 

  3. M. Bashari, C. Lagnika, D. Ocen, H. Chen, J. Wang, X. Xu, Z. Jin, Int. J. Biol. Macromol. 59, 246 (2013)

    Article  CAS  PubMed  Google Scholar 

  4. S. Bhatia, G. Bhakri, M. Arora, S.K. Batta, S.K. Uppal, Sugar Tech. 18, 204 (2016)

    Article  CAS  Google Scholar 

  5. P. Klahan, M. Okuyama, K. Jinnai, M. Ma, A. Kikuchi, Y. Kumagai, T. Tagami, A. Kimura, Biosci. Biotechnol. Biochem. 82, 1480 (2018)

    Article  CAS  PubMed  Google Scholar 

  6. A. Esmaeilkhanian, F. Sharifianjazi, A. Abouchenari, A. Rouhani, N. Parvin, M. Irani, Appl. Biochem. Biotechnol. 189, 919 (2019)

    Article  CAS  PubMed  Google Scholar 

  7. E.R.M. Shafie, Z.A. Ahmad, N. Ahmad, Ceram. Int. 45, 21168 (2019)

    Article  CAS  Google Scholar 

  8. M. Kakiage, S. Oda, Mater. Lett. 248, 114 (2019)

    Article  CAS  Google Scholar 

  9. Y. Kurashina, A. Ezura, R. Murakami, M. Mizutani, J. Komotori, J. Mater. Sci.: Mater. Med. 30, 57 (2019)

    PubMed  Google Scholar 

  10. J. Pan, J. Zhang, L. Wang, D. Wan, Chem. Commun. 50, 14010 (2014)

    Article  CAS  Google Scholar 

  11. A. Nihmath, M.T. Ramesan, Res. Chem. Intermed. 46, 5049 (2020)

    Article  CAS  Google Scholar 

  12. E. Ghasemi, M. Sillanpää, J. Sep. Sci. 38, 164 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. S. Sekar, S.E. Panchu, E. Kolanthai, N.K. Subbaraya, Res. Chem. Intermed. 48, 4857 (2022)

    Article  CAS  Google Scholar 

  14. R. Agha Beygli, N. Mohaghegh, E. Rahimi, Res. Chem. Intermed. 45, 2255 (2019)

    Article  CAS  Google Scholar 

  15. Z.-C. Xiong, Z.-Y. Yang, Y.-J. Zhu, F.-F. Chen, Y.-G. Zhang, R.-L. Yang, ACS Appl. Mater. Interfaces. 9, 22212 (2017)

    Article  CAS  PubMed  Google Scholar 

  16. B. Akhlaghinia, P. Sanati, A. Mohammadinezhad, Z. Zarei, Res. Chem. Intermed. 45, 3215 (2019)

    Article  CAS  Google Scholar 

  17. H. Kashiwada, Y. Shimizu, Y. Sano, K. Yamauchi, H. Guang, H. Kumamoto, H. Unuma, Y. Zhu, J. Biomed. Mater. Res. 109, 1611 (2021)

    Article  CAS  Google Scholar 

  18. G.-J. Huang, H.-P. Yu, X.-L. Wang, B.-B. Ning, J. Gao, Y.-Q. Shi, Y.-J. Zhu, J.-L. Duan, J. Mater. Chem. B. 9, 1277 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. T.-W. Sun, Y.-J. Zhu, F. Chen, RSC Adv. 8, 26218 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. L. Gu, J. Zhang, L. Li, Z. Du, Q. Cai, X. Yang, Biomed. Mater. 14, 045001 (2019)

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zheng, W. Ma, Z. Yang, H. Zhang, J. Ma, T. Li, H. Niu, Y. Zhou, Q. Yao, J. Chang, Y. Zhu, C. Wu, Chem. Eng. J. 430, 132912 (2022)

    Article  CAS  Google Scholar 

  22. T.-W. Sun, Y.-J. Zhu, F. Chen, Y.-G. Zhang, Chem. Asian J. 12, 655 (2017)

    Article  CAS  PubMed  Google Scholar 

  23. Y. Chen, W. Zhou, J. Ma, F. Ruan, X. Qi, Y. Cai, Microsc. Res. Tech. 83, 268 (2020)

    Article  CAS  PubMed  Google Scholar 

  24. S. Pang, Y. Wu, X. Zhang, B. Li, J. Ouyang, M. Ding, Process Biochem. 51, 229 (2016)

    Article  CAS  Google Scholar 

  25. T. Jesionowski, J. Zdarta, B. Krajewska, Adsorption 20, 801 (2014)

    Article  CAS  Google Scholar 

  26. H. Mo, J. Qiu, C. Yang, L. Zang, E. Sakai, Cellulose 27, 4963 (2020)

    Article  CAS  Google Scholar 

  27. C. Sicard. Angew Chem Int Ed. 62, (2023)

  28. R.C. Rodrigues, Á. Berenguer-Murcia, D. Carballares, R. Morellon-Sterling, R. Fernandez-Lafuente, Biotechnol. Adv. 52, 107821 (2021)

    Article  CAS  PubMed  Google Scholar 

  29. C. Li, G. Zhang, N. Liu, L. Liu, Int. J. Food Prop. 19, 1776 (2016)

    Article  CAS  Google Scholar 

  30. H.T. Imam, P.C. Marr, A.C. Marr, Green Chem. 23, 4980 (2021)

    Article  CAS  Google Scholar 

  31. M. Piras, A. Salis, M. Piludu, D. Steri, M. Monduzzi, Chem. Commun. 47, 7338 (2011)

    Article  CAS  Google Scholar 

  32. S.S. Patil, V.K. Rathod, Indl. Crops Prod. 177, 114385 (2022)

    Article  CAS  Google Scholar 

  33. M.R. Ladole, J.S. Mevada, A.B. Pandit, Bioresour. Technol. 239, 117 (2017)

    Article  CAS  PubMed  Google Scholar 

  34. M.R. Ladole, R.R. Nair, Y.D. Bhutada, V.D. Amritkar, A.B. Pandit, Ultrason. Sonochem. 48, 453 (2018)

    Article  CAS  PubMed  Google Scholar 

  35. I. Malhotra, S.F. Basir, Appl. Biochem. Biotechnol. 191, 838 (2020)

    Article  CAS  PubMed  Google Scholar 

  36. L. Dal Magro, J.F. Kornecki, M.P. Klein, R.C. Rodrigues, R. Fernandez-Lafuente, Enzyme Microb. Technol. 132, 109397 (2020)

    Article  Google Scholar 

  37. D. de Andrades, N.G. Graebin, M.K. Kadowaki, M.A.Z. Ayub, R. Fernandez-Lafuente, R.C. Rodrigues, Int. J. Biol. Macromol. 129, 672 (2019)

    Article  PubMed  Google Scholar 

  38. R.S. Singh, K. Chauhan, Catal. Lett. 149, 2718 (2019)

    Article  CAS  Google Scholar 

  39. S. Kumar, I. Haq, J. Prakash, A. Raj, Int. J. Biol. Macromol. 98, 24 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. J. Rogalski, J. Szczodrak, M. Pleszczyńska, J. Fiedurek, J. Mol. Catal., B Enzym. 3, 271 (1997)

    Article  CAS  Google Scholar 

  41. A.B. El-Tanash, E. El-Baz, A.A. Sherief, Eur. Food Res. Technol. 233, 735 (2011)

    Article  CAS  Google Scholar 

  42. A. Pistone, C. Scolaro, C. Celesti, A. Visco, Polymers 14, 801 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Y. Wang, Q. Wang, X. Song, J. Cai, New J. Chem. 42, 8391 (2018)

    Article  CAS  Google Scholar 

  44. L.S. McKee, Protein-Carbohydrate Interactions (Springer, New York, 2017), pp.27–36

    Book  Google Scholar 

  45. A. Rekowski, G. Langenkämper, M. Dier, M.A. Wimmer, K.A. Scherf, C. Zörb, Cereal Chem. 98, 1059 (2021)

    Article  CAS  Google Scholar 

  46. N. Nematidil, M. Sadeghi, S. Nezami, H. Sadeghi, Carbohydr. Polym. 222, 114971 (2019)

    Article  CAS  PubMed  Google Scholar 

  47. A. Antonakos, E. Liarokapis, A. Kyriacou, T. Leventouri, Am Mineral. 102, 85 (2017)

    Article  Google Scholar 

  48. M. Sun, L. Zhang, S. Xu, B. Yu, Y. Wang, L. Zhang, W. Zhang, Analyst 147, 947 (2022)

    Article  CAS  PubMed  Google Scholar 

  49. J. Long, T. Pan, Z. Xie, X. Xu, Z. Jin, LWT 128, 109460 (2020)

    Article  CAS  Google Scholar 

  50. Y. Wang, Q. Wang, X. Song, J. Cai. Biochem. Eng. J. 141, 163 (2019)

    Article  CAS  Google Scholar 

  51. F.A. Erhardt, H.-J. Jördening, J. Biotechnol. 131, 440 (2007)

    Article  CAS  PubMed  Google Scholar 

  52. Y. Ding, H. Zhang, X. Wang, H. Zu, C. Wang, D. Dong, M. Lyu, S. Wang, Materials 14, 130 (2020)

    Article  PubMed  PubMed Central  Google Scholar 

  53. Y. Ding, L. Liu, Y. Fang, X. Zhang, M. Lyu, S. Wang, Nanomaterials 8, 173 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  54. F. Shahid, A. Aman, S.A.U. Qader, Int. J. Polym. Sci. 2019, 1 (2019)

    Article  Google Scholar 

  55. S. Kumar, V. Beniwal, N. Kumar, A. Kumar, V. Chhokar, T.P. Khaket, Biocatal. Agric Biotechnol. 4, 398 (2015)

    Article  Google Scholar 

  56. F. Shahid, A. Ansari, A. Aman, S.A.U. Qader, Catal Lett. 150, 613 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21707034), Natural Science Foundation of Educational Department of Anhui Province (No. KJ2020A0856), the National Key R&D Program of China (No. 2021YFF0701900), and the Science and Technology Commission of Shanghai Municipality (No. 20142200900).

Author information

Authors and Affiliations

Authors

Contributions

BS and YW contributed equally to this work. BS: Validation, investigation, data curation, formal analysis, writing—original draft. YW: Investigation, formal analysis, conceptualization, funding acquisition. HY: Investigation. L: Conceptualization, supervision, methodology. WZ: Conceptualization, project administration, funding acquisition, supervision, methodology, writing—review and editing.

Corresponding authors

Correspondence to Lei Zhang or Weibing Zhang.

Ethics declarations

Conflict of interest

There are no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8360 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Wang, Y., Yu, H. et al. The hydroxyapatite nanowires as high loading carrier for immobilization of dextranase by crosslinking method. Res Chem Intermed 49, 4009–4024 (2023). https://doi.org/10.1007/s11164-023-05066-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05066-8

Keywords

Navigation