Skip to main content
Log in

Optimizing the catalytic activity of PtRuM (M = Fe, Co, Ni) nanoparticles on mesoporous carbon Vulcan–multiwalled carbon nanotubes support for direct methanol fuel cells by controlling third-metal type and content

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

PtRu/C material is one of the most well-known and efficient anode catalysts in direct methanol fuel cells (DMFCs). Nevertheless, new anode catalysts with even higher performance and lower cost are indispensable for the further development of this fuel cell technology. The present study reports the synthesis and characterization of ternary alloy catalysts of Pt1Ru1Mx (M = Fe, Co, Ni; x = 1, 3)/C-MWCNTs and Pt1Ru1Coy (y = 0, 0.5, 1, 2, 3, 4)/C-MWCNTs to optimize the material composition toward the enhanced methanol oxidation activity and improved CO tolerance for DMFCs. With fixing the atomic ratio of Pt:Ru = 1:1 and carbon Vulcan–multi-walled carbon nanotubes (C-MWCNTs) composite support with mass ratio C:MWCNTs = 7:3, the designed catalysts changed the third metal M (Fe, Co, Ni) and the Co atomic composition. The electrochemical study showed that all the Pt1Ru1Mx (M = Fe, Co, Ni; x = 1, 3)/C-MWCNTs ternary catalysts presented significantly higher methanol oxidation activity over the corresponding Pt1Ru1/C-MWCNTs binary alloy. Remarkably, the catalytic performance of ternary metal nanoparticles on the C-MWCNTs support was PtRuCo/C-MWCNTs > PtRuNi/C-MWCNTs > PtRuFe/C-MWCNTs, the electron transfer resistance of those was PtRuCo/C-MWCNTs < PtRuNi/C-MWCNTs < PtRuFe/C-MWCNTs, but the resistance to CO poisoning was PtRuFe/C-MWCNTs > PtRuCo/C-MWCNTs > PtRuNi/C-MWCNTs. Since Co exhibited as the best additional metal over Fe and Ni for both x = 1 and 3, the Pt1Ru1Coy (y = 0, 0.5, 1, 2, 3, 4)/C-MWCNTs were studied in detail. As a result, the Co content greatly affected the methanol oxidation efficiency, in which Pt1Ru1Co2/C-MWCNTs revealed the highest value of current density (jf = 227.4 mA/mgPtRu) and the smallest electron transfer resistance (Ret = 2.76 Ω cm2). Moreover, all the catalyst systems displayed strong tolerance for CO poisoning because of the small reverse anodic current density. Particularly, Pt1Ru1Co2/C-MWCNTs catalyst exhibited not only the highest methanol oxidation ability but also the lowest electron transfer resistance, which is suitable for use in DMFCs anode electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

No supplementary data and materials.

References

  1. X. Ren, Q. Lv, L. Liu, B. Liu, Y. Wang, A. Liu, G. Wu, Sustain Energy Fuels 4, 15 (2020)

    Article  CAS  Google Scholar 

  2. A. Yuda, A. Ashok, A. Kumar, Catal. Rev. 64, 126 (2022)

    Article  CAS  Google Scholar 

  3. J. Xu, K. Hua, G. Sun, C. Wang, X. Lv, Y. Wang, Electrochem. Commun. 8, 982 (2006)

    Article  CAS  Google Scholar 

  4. R. Baronia, J. Goel, S. Tiwari, P. Singh, D. Singh, S.P. Singh, S.K. Singhal, Int. J. Hydrog. Energy 42, 10238 (2017)

    Article  CAS  Google Scholar 

  5. A.B.A.A. Nassr, I. Sinev, W. Grünert, M. Bron, Appl. Catal. B 142, 849 (2013)

    Article  Google Scholar 

  6. P. Sapkota, C. Boyer, S. Lim, K.F. Aguey-Zinsou, Res. Chem. Intermed. 48, 3019 (2022)

    Article  CAS  Google Scholar 

  7. J. Maya-Cornejo, A. Garcia-Bernabé, V. Compañ, Int. J. Hydrog. Energy 43, 872 (2018)

    Article  CAS  Google Scholar 

  8. S. Das, P.P. Kundu, RSC Adv. 5, 93539 (2015)

    Article  CAS  Google Scholar 

  9. Q. Lu, J. Huang, C. Han, L. Sun, X. Yang, Electrochim. Acta 266, 305 (2018)

    Article  CAS  Google Scholar 

  10. H. Zhao, W. Qi, X. Zhou, H. Wu, Y. Li, Chin. J. Catal. 39, 342 (2018)

    Article  Google Scholar 

  11. O.A. Petrii, J. Solid State Electrochem. 12, 609 (2008)

    Article  CAS  Google Scholar 

  12. H. Wroblowa, J. Electroanal. Chem. 7, 428 (1964)

    Google Scholar 

  13. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L.R.K.J. Lindqvist, J.R. Kitchin, T. Bligaard, H. Jonsson, J. Phys. Chem. B 108, 17886 (2004)

    Article  Google Scholar 

  14. M. Watanabe, S. MoToo, Denki Kagaku oyobi Kogyo Butsuri Kagaku 41, 190 (1973)

    Article  CAS  Google Scholar 

  15. M. Watanabe, S. MoToo, J. Electroanal. Chem. Interfacial Electrochem. 60, 275 (1975)

    Article  CAS  Google Scholar 

  16. Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, J. Phys. Chem. B 108, 8234 (2004)

    Article  CAS  Google Scholar 

  17. Y.J. Gu, W.T. Wong, Langmuir 22, 11447 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. C.Z. Li, Z.B. Wang, J. Liu, C.T. Liu, D.M. Gu, J.C. Han, RSC Adv. 4, 63922 (2014)

    Article  CAS  Google Scholar 

  19. V. Stamenkovic, B.S. Mun, K.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J.K. Nørskov, Angew. Chem. 118, 2963 (2006)

    Article  Google Scholar 

  20. P. Strasser, Q. Fan, M. Devenney, W.H. Weinberg, P. Liu, J.K. Nørskov, J. Phys. Chem. B 107, 11013 (2003)

    Article  CAS  Google Scholar 

  21. M.K. Jeon, J.Y. Won, K.R. Lee, S.I. Woo, Electrochem. Commun. 9, 2163 (2007)

    Article  CAS  Google Scholar 

  22. Z. Cai, Y. Kuang, X. Qi, P. Wang, Y. Zhang, Z. Zhang, X. Sun, J. Mater. Chem. A 3, 1182 (2015)

    Article  CAS  Google Scholar 

  23. Z.B. Wang, G.P. Yin, Y.Y. Shao, B.Q. Yang, P.F. Shi, P.X. Feng, J. Power Sources 165, 9 (2007)

    Article  CAS  Google Scholar 

  24. F. Ye, S. Chen, X. Dong, W. Lin, J. Nat. Gas Chem. 16, 162 (2007)

    Article  CAS  Google Scholar 

  25. H. Lee, S. Park, H. Kim, Chem. Eng. 414, 128792 (2021)

    Article  CAS  Google Scholar 

  26. S. Xue, W. Deng, F. Yang, J. Yang, I.S. Amiinu, D. He, S. Mu, ACS Catal. 8, 7578 (2018)

    Article  CAS  Google Scholar 

  27. N. Kakati, J. Maiti, J.Y. Oh, Y.S. Yoon, Appl. Surf. Sci. 257, 8433 (2011)

    Article  CAS  Google Scholar 

  28. M.K. Jeon, K.R. Lee, H. Daimon, A. Nakahara, S.I. Woo, Catal. Today 132, 123 (2008)

    Article  CAS  Google Scholar 

  29. T. Huang, J. Liu, R. Li, W. Cai, A. Yu, Electrochem. Commun. 11, 643 (2009)

    Article  CAS  Google Scholar 

  30. M. Semasko, L. Tamasauskaite-Tamasiunaite, V. Kepeniene, A. Balciunaite, J. Vaiciuniene, A. Drabavicius, E. Norkus, ECS Trans. 68, 55 (2015)

    Article  CAS  Google Scholar 

  31. N. Jung, D.Y. Chung, J. Ryu, S.J. Yoo, Y.E. Sung, Nano Today 9, 433 (2014)

    Article  CAS  Google Scholar 

  32. D.L. Quan, P.H. Le, Coatings 11, 571 (2021)

    Article  CAS  Google Scholar 

  33. C.L. Lin, Y.C. Yeh, Res. Chem. Intermed. 40, 2207 (2014)

    Article  CAS  Google Scholar 

  34. D.L. Quan, P.H. Le, Can Tho Univ. J. Sci. 58, 98 (2022)

    Google Scholar 

  35. C.S. Wu, H.T. Liao, Polymer 48, 4449 (2007)

    Article  CAS  Google Scholar 

  36. O. Winjobi, Z. Zhang, C. Liang, W. Li, Electrochim. Acta 55, 4217 (2010)

    Article  CAS  Google Scholar 

  37. Y. Zhao, L. Fan, J. Ren, B. Hong, Int. J. Hydrog. Energy 39, 4544 (2014)

    Article  CAS  Google Scholar 

  38. E. Antolini, Mater. Chem. Phys. 78, 563 (2003)

    Article  CAS  Google Scholar 

  39. E. Antolini, L. Giorgi, F. Cardellini, E. Passalacqua, J. Solid State Chem. 5, 131 (2001)

    CAS  Google Scholar 

  40. A.S. Arico, P.L. Antonucci, E. Modica, V. Baglio, H. Kim, V. Antonucci, Electrochim. Acta 47, 3723 (2002)

    Article  CAS  Google Scholar 

  41. N. Giordano, E. Passalacqua, L. Pino, A.S. Arico, V. Antonucci, M. Vivaldi, K. Kinoshita, Electrochim. Acta 36, 1979 (1991)

    Article  CAS  Google Scholar 

  42. R.M. Arán-Ais, F. Dionigi, T. Merzdorf, M. Gocyla, M. Heggen, R.E. Dunin-Borkowski, P. Strasser, Nano Lett. 15, 7473 (2015)

    Article  PubMed  Google Scholar 

  43. Y. Takasu, H. Itaya, T. Iwazaki, R. Miyoshi, T. Ohnuma, W. Sugimoto, Y. Murakami, Chem. Commun. 4, 341 (2001)

    Article  Google Scholar 

  44. Z. Liu, J.Y. Lee, W. Chen, M. Han, L.M. Gan, Langmuir 20, 181 (2004)

    Article  CAS  PubMed  Google Scholar 

  45. R. Mancharan, J.B. Goodenough, J. Mater. Chem. 2, 875 (1992)

    Article  Google Scholar 

  46. S.K. Wang, F. Tseng, T.K. Yeh, C.C. Chieng, J. Power Sources 167, 413 (2007)

    Article  CAS  Google Scholar 

  47. J. Sun, Y. Hou, X. Wang, T. Kou, N. Liu, R. Zhang, Z. Zhang, RSC Adv. 11, 14970 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. C.C. Kung, P.Y. Lin, Y. Xue, R. Akolkar, L. Dai, X. Yu, C.C. Liu, J. Power Sources 256, 329 (2014)

    Article  CAS  Google Scholar 

  49. M. Xiao, S. Li, X. Zhao, J. Zhu, M. Yin, C. Liu, W. Xing, ChemCatChem 6, 2825 (2014)

    Article  CAS  Google Scholar 

  50. M.W. Xu, Z. Su, Z.W. Weng, Z.C. Wang, B. Dong, Mater. Chem. Phys. 124, 785 (2010)

    Article  CAS  Google Scholar 

  51. Y. Zhao, X. Yang, J. Tian, F. Wang, L. Zhan, J. Power Sources 195, 4634 (2010)

    Article  CAS  Google Scholar 

  52. Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan, J. Phys. Chem. B 109, 22212 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. M.F.R. Hanifah, J. Jaafar, M.H.D. Othman, A.F. Ismail, M.A. Rahman, N. Yusof, F. Aziz, N.A. Rahman, J. Alloys Compd. 793, 232 (2019)

    Article  CAS  Google Scholar 

  54. C.T. Hsieh, J.Y. Lin, J. Power Sources 188, 347 (2009)

    Article  CAS  Google Scholar 

  55. E. Lee, S. Kim, J.H. Jang, H.U. Park, M.A. Matin, Y.T. Kim, Y.U. Kwon, J. Power Sources 294, 75 (2015)

    Article  CAS  Google Scholar 

  56. S. Yin, Z. Wang, X. Qian, D. Yang, Y. Xu, X. Li, L. Wang, H. Wang, A.C.S. Sustain, Chem. Eng. 7, 7960 (2019)

    CAS  Google Scholar 

  57. J.E.B. Randles, Discuss. Faraday Soc. 1, 11 (1947)

    Article  Google Scholar 

  58. B. Wickman, A. Bastos Fanta, A. Burrows, A. Hellman, J.B. Wagner, B. Iandolo, Sci. Rep. 7, 1 (2017)

  59. A.T.E. Vilian, M. Rajkumar, S.M. Chen, C.C. Hu, K.M. Boopathi, C.W. Chu, RSC Adv. 4, 41387 (2014)

    Article  CAS  Google Scholar 

  60. L.Q. Dang, M.T. Nguyen, N.V. Truong, P.H. Le, N.V. Long, Int. J. Electrochem. Sci. 12, 10187 (2017)

    Article  CAS  Google Scholar 

  61. Y. Feng, W. Han, T. Wang, Q. Chen, Y. Zhang, Y. Sun, & H. Wang, Front Chem. 10, 885965 (2022)

  62. S. Zafeiratos, F. Paloukis, G. Papakonstantinou, D. Teschner, & S.G. Neophytides, Catal. Today 157, 250 (2010)

  63. H. Jiang, H. Zhang, Q. Kang, H. Ma, Y. Tong, F. Gao, Q. Lu, Sci. Rep. 9, 15681 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by Vietnam National University Ho Chi Minh City (VNU-HCM) under grant number VL2022-20-01.

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (DLQ, DNS), formal analysis (DLQ, PHL, DNS), investigation (DLQ, PHL), resources (DNS), supervision (PHL, DNS), validation (DLQ, PHL, DNS), visualization (DLQ, PTH), writing of original draft (DLQ, PHL, DNS), reviewing and editing (DLQ, PTH, PHL, DNS).

Corresponding authors

Correspondence to Phuoc Huu Le or Do Ngoc Son.

Ethics declarations

Competing interests

The authors declare that they have no competing interest.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, D.L., Hai, P.T., Le, P.H. et al. Optimizing the catalytic activity of PtRuM (M = Fe, Co, Ni) nanoparticles on mesoporous carbon Vulcan–multiwalled carbon nanotubes support for direct methanol fuel cells by controlling third-metal type and content. Res Chem Intermed 49, 3987–4007 (2023). https://doi.org/10.1007/s11164-023-05055-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05055-x

Keywords

Navigation