Skip to main content
Log in

Simultaneous activation of aldehydes and methylamine liberation by 4,4ʹ-trimethylenedipiperidine in the solid-state synthesis of N-methyl imines

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The commercially available 4,4ʹ-trimethylenedipiperidine (TMDP) was used in the solid state to activate various aldehydes and controlled the libration of methyl amine for preparing the corresponding N-methyl imines. It was indicated that TMDP could play multiple roles simultaneously in this reaction, including (a) a bifunctional base with a predicted pKa ~ 11 and a good scavenger of acid, (b) a catalyst able to form strong hydrogen bonding and chemical interactions with aldehyde functional group through hemiaminal and/or iminium intermediate, and (c) liberating methyl amine from its salt viz. methylammonium chloride. TMDP could be regenerated by neutralization. It was also regenerated by heating at 70 °C, which is reported for the first time according to the best of our knowledge. The regenerated reagent was stable regarding its chemical structure, and there was no significant loss in the catalytic efficiency even after several runs. The mechanism was investigated by performing several control reactions and studying the FTIR and NMR spectra in the solid-state synthesis. The current work demonstrated TMDP as a safe and greener promoter-acid scavenger for organic transformations compared with toxic, flammable, volatile liquid secondary amines such as piperidine.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. O.V. Kharissova, B.I. Kharisov, C.M.O. González, Y.P. Méndez, I. López, R. Soc. Open Sci. 6, 191378 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  2. Z.S. Qureshi, K.M. Deshmukh, B.M. Bhanage, Clean Technol. Envir. 16, 1487 (2014)

    Article  Google Scholar 

  3. S. Khandelwal, Y.K. Tailor, M. Kumar, J. Mol. Liq. 215, 345 (2016)

    Article  CAS  Google Scholar 

  4. S. Zangade, P. Patil, Curr. Org. Chem. 23, 2295 (2019)

    Article  CAS  Google Scholar 

  5. B. List, Chem. Rev. 107, 5413 (2007)

    Article  CAS  Google Scholar 

  6. B.K. Banik, B. Banerjee, Organocatalysis: A Green Tool for Sustainable Developments (Walter de Gruyter GmbH, Belin/Boston, 2022)

    Book  Google Scholar 

  7. E.N. Jacobsen, R.R. Knowles, Proc. Natl. Acad. Sci. 107, 20678 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  8. I. Karamé, H. Srou, Recent Advances in Organocatalysis (InTech Open, London, 2016)

    Book  Google Scholar 

  9. H. Miyabe, Hydrogen-bonding activation in chiral organocatalysts, in Recent Advances in Organocatalysis. ed. by I. Karamé, H. Srou (InTech Open, London, 2016), pp.3–16

    Google Scholar 

  10. A. Kajal, S. Bala, S. Kamboj, N. Sharma, V. Saini, J. Catalysts 2013, 893512 (2013)

    Article  Google Scholar 

  11. A. Hameed, M. Al-Rashida, M. Uroos, S.A. Ali, K.M. Khan, Expert Opin. Ther. Pat. 27, 63 (2017)

    Article  CAS  PubMed  Google Scholar 

  12. W.A. Zoubi, Y.G. Ko, Appl. Organomet. Chem. 31, e3574 (2017)

    Article  Google Scholar 

  13. A.M. Abu-Dief, I.M.A. Mohamed, J. Basic Appl. Sci. 4, 119 (2015)

    Google Scholar 

  14. S.F. Martin, Pure Appl. Chem. 81, 195 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G. Kaupp, J. Schmeyers, J. Boy, Tetrahedron 56, 6899 (2000)

    Article  CAS  Google Scholar 

  16. R. Annunziata, M. Benaglia, M. Cinquini, F. Cozzi, Eur. J. Org. Chem. 2002, 1184 (2002)

    Article  Google Scholar 

  17. A.K. Chakraborti, S. Bhagat, S. Rudrawar, Tetrahedron Lett. 45, 7641 (2004)

    Article  CAS  Google Scholar 

  18. M.Á. Vázquez, M. Landa, L. Reyes, R. Miranda, J. Tamariz, F. Delgado, Synth. Commun. 34, 2705 (2004)

    Article  Google Scholar 

  19. L. Paquin, J. Hamelin, F. Texier-Boullet, Synthesis 2006, 1652 (2006)

    Article  Google Scholar 

  20. M. Gopalakrishnan, P. Sureshkumar, V. Kanagarajan, J. Thanusu, Res. Chem. Intermed. 33, 541 (2007)

    Article  CAS  Google Scholar 

  21. K.P. Guzen, A.S. Guarezemini, A.T.G. Órfão, R. Cella, C.M.P. Pereira, H.A. Stefani, Tetrahedron Lett. 48, 1845 (2007)

    Article  CAS  Google Scholar 

  22. H. Naeimi, H. Sharghi, F. Salimi, K. Rabiei, Heteroat. Chem. 19, 43 (2008)

    Article  CAS  Google Scholar 

  23. E. Ali, M.R. Naimi-Jamal, M.G. Dekamin, Sci. Iran. 20, 592 (2013)

    CAS  Google Scholar 

  24. N.G. Khaligh, H.S. Abbo, S.J.J. Titinchi, Res. Chem. Intermed. 43, 901 (2017)

    Article  CAS  Google Scholar 

  25. N.G. Khaligh, O.C. Ling, T. Mihankhah, M.R. Johan, J.J. Ching, Aust. J. Chem. 72, 194 (2019)

    Article  CAS  Google Scholar 

  26. N.G. Khaligh, T. Mihankhah, M.R. Johan, Res. Chem. Intermed. 45, 3291 (2019)

    Article  CAS  Google Scholar 

  27. N.G. Khaligh, T. Mihankhah, M.R. Johan, Polycycl. Arom Comp. 40, 1606 (2020)

    Article  CAS  Google Scholar 

  28. N.G. Khaligh, T. Mihankhah, M.R. Johan, J. Mol. Liq. 277, 794 (2019)

    Article  CAS  Google Scholar 

  29. L. Zaharani, N.G. Khaligh, H. Gorjian, M.R. Johan, Turk. J. Chem. 45, 261 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. https://www.chemicalbook.com/ChemicalProductProperty_EN_CB0344188.htm, Accessed 20 Feb 2023

  31. H.K. Hall, J. Am. Chem. Soc. 79, 5441 (1957)

    Article  CAS  Google Scholar 

  32. Safety Data Sheet for methylamine hydrochloride CAS-No.: 593-51-1, Version 6.7, Revision Date 09/09/2022, Sigma Aldrich

  33. https://chemaxon.com/chemicalize, Accessed on 20 Feb 2023

  34. Y. Erdoğdu, M.T. Güllüoğlu, S. Yurdakul, J. Mol. Struct. 889, 361 (2008)

    Article  Google Scholar 

  35. J. Bellanato, Spectrochim. Acta 16, 1344 (1960)

    Article  CAS  Google Scholar 

  36. T. Belhocine, S.A. Forsyth, H.Q.N. Gunaratne, M. Nieuwenhuyzen, P. Nockemann, A.V. Puga, K.R. Seddon, G. Srinivasan, K. Whiston, Phys. Chem. Chem. Phys. 17, 10398 (2015)

    Article  CAS  PubMed  Google Scholar 

  37. H.D. Lutz, J. Mol. Struct. 646, 227 (2003)

    Article  CAS  Google Scholar 

  38. R.A. Heacock, L. Marion, Can. J. Chem. 34, 1782 (1956)

    Article  CAS  Google Scholar 

  39. L. Zaharani, Z. Shahnavaz, M.R. Johan, N.G. Khaligh, J. Mol. Liq. 336, 116856 (2021)

    Article  CAS  Google Scholar 

  40. H. Gotoh, T. Uchimaru, Y. Hayashi, Chem. Eur. J. 21, 12337 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. V. Ramanujam, C. Charlier, A. Bax, Angew. Chem. Int. Ed. 58, 15309 (2019)

    Article  CAS  Google Scholar 

  42. H. Mayr, A.R. Ofial, E.-U. Wurthwein, N.C. Aust, J. Am. Chem. Soc. 119, 12727 (1997)

    Article  CAS  Google Scholar 

  43. W.H. Correa, J.K. Edwards, A. McCluskey, I. McKinnonc, J.L. Scot, Green Chem. 5, 30 (2003)

    Article  CAS  Google Scholar 

  44. E.V. Dalessandro, H.P. Collin, L.G.L. Guimarães, M.S. Valle, J.R. Pliego Jr., J. Phys. Chem. B 121, 5300 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. J.R. Pliego Jr., A.F.C. Alcântara, D.P. Veloso, W.B. Almeida, J. Braz. Chem. Soc. 10, 381 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are also grateful to all staff members in the Analytical and Testing Center of Nanotechnology & Catalysis Research Center for their partial support.

Funding

This work was supported by Research Grant IF008-2023 from Nippon Sheet Glass Foundation for Materials Science and Engineering, Japan, and ST018-2022 from UM International Collaboration Grant, Universiti Malaya, Malaysia.

Author information

Authors and Affiliations

Authors

Contributions

LZ: Methodology, Investigation, Formal analysis, Data collection; MG: Methodology, Formal analysis, Data collection; ST: Resources, Visualization, Writing-original draft; MRJ: Supervision; NGK: Conceptualization, Data curation, Validation, Visualization, Resources, Supervision, Project administration, Writing-original draft, Writing-review & editing.

Corresponding author

Correspondence to Nader Ghaffari Khaligh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5287 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaharani, L., Ghafarikhaligh, M., Titinchi, S. et al. Simultaneous activation of aldehydes and methylamine liberation by 4,4ʹ-trimethylenedipiperidine in the solid-state synthesis of N-methyl imines. Res Chem Intermed 49, 3519–3538 (2023). https://doi.org/10.1007/s11164-023-05045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05045-z

Keywords

Navigation