Skip to main content
Log in

Enhanced adsorption desulfurization performance over modified zeolite clinoptilolite for a model fuel in a competitive process

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

In this study, modified samples of natural clinoptilolite zeolite were prepared to investigate the adsorption capacity of sulfur compounds in different model fuels. For this goal, mesoporous clinoptilolite zeolite was prepared by sequential dealumination and desilication process and then impregnated with two metals, copper (Cu) and cerium (Ce). The samples were characterized by XRD, BET, FE-SEM, FT-IR, EDS and NH3-TPD. The results showed that dealumination and desilication processes led to a significant increase in the total and mesoporous surface area of the modified zeolite. The surface area and the total pore volume of the parent sample were measured as 18.7 m2/g and 0.057 cm3/g, respectively, which increased to 73.7 m2/g and 0.107 cm3/g for the modified sample meso1_CZ. In Cu-CZ, Ce-CZ and CuCe-CZ impregnated samples because of presence of d-electrons, sulfur compounds interact with the cations through π-complexation that resulted better performance comparing the parent zeolite, in which CuCe-CZ, with adsorption capacity of 31.03 and 31.05 mg/g for thiophene and dibenzothiophene, respectively, has the highest capacity to adsorb sulfur compounds. The results also showed that by adding toluene and cyclohexene to the gasoline model fuel for a competitive adsorption process, the adsorption capacity reduced somewhat, so that the reduction percentage value is lower for the zeolite containing Ce compared to the zeolite containing Cu. The kinetic models in adsorbing the sulfur compounds followed the pseudo-second-order equation. For adsorption of dibenzothiophene onto CuCe-CZ sample, Langmuir was the best-fitting isotherm to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. W. Piao, Z. Li, C. Li et al., RSC Adv. 11, 27453 (2021)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. A. Al-Nayili, H.S. Majdi, T.M. Albayati et al., Catalysts 12, 324 (2022)

    CAS  Google Scholar 

  3. Y.A.A. Al-Khodor, T.M. Albayati, Process Saf. Environ. Prot. 136, 334 (2020)

    Google Scholar 

  4. G. Mohebali, A.S. Ball, B. Rasekh et al., Enzyme Microb. Technol. 40, 578 (2007)

    CAS  Google Scholar 

  5. F. Khadem Haghighat, F. Eftekhar, M. Mazaheri, Iran. J. Biotechnol. 1, 121 (2003)

    Google Scholar 

  6. D.J. Monticello, ChemTech 28, 38 (1998)

    CAS  Google Scholar 

  7. Y. Gao, L. Cheng, R. Gao et al., J. Hazard. Mater. 401, 123267 (2021)

    CAS  PubMed  Google Scholar 

  8. M.F. Wagenhofer, H. Shi, O.Y. Gutiérrez et al., Sci. Adv. 6, 5331 (2020)

    Google Scholar 

  9. X. Liu, D. Yi, Y. Cui et al., Energy Chem. 27, 271 (2018)

    Google Scholar 

  10. H. Shang, W. Du, Z. Liu et al., J. Ind. Eng. Chem. 19, 1061 (2013)

    CAS  Google Scholar 

  11. M.A. Bodaghifard, M. Hamidinasab, N. Soleimani, Res. Chem. Intermed. 49, 1563 (2023)

    CAS  Google Scholar 

  12. K. Desai, S. Dharaskar, J. Pandya et al., Environ. Sci. Pollut. Res. 29, 49770 (2022)

    CAS  Google Scholar 

  13. M.A. Rezvani, M. Shaterian, M. Aghmasheh, Environ. Technol. 41, 1219 (2020)

    CAS  PubMed  Google Scholar 

  14. S. Xun, Z. Yu, M. He et al., Res. Chem. Intermed. 45, 4315 (2019)

    CAS  Google Scholar 

  15. M.Y. Mohammed, A.M. Ali, T.M. Albayati, Chem. Eng. Res. Des. 182, 659 (2022)

    CAS  Google Scholar 

  16. Z. Jiang, L. Hongying, Y. Zhang et al., Chinese J. Catal. 32, 707 (2011)

    CAS  Google Scholar 

  17. M.Y. Mohammed, T.M. Albayati, A.M. Ali, Chem. Africa 5, 1715 (2022)

    CAS  Google Scholar 

  18. H. Song, X. Wan, M. Dai et al., Fuel Process. Technol. 116, 52 (2013)

    CAS  Google Scholar 

  19. H. Song, Y. Chang, X. Wan et al., Ind. Eng. Chem. Res. 53, 5701 (2014)

    CAS  Google Scholar 

  20. M.A. Abedi, S. Abbasizadeh, R. Karimzadeh, Res. Chem. Intermed. 47, 497 (2021)

    CAS  Google Scholar 

  21. J.H. Kim, X. Ma, A. Zhou et al., Catal. Today. 111, 74 (2006)

    CAS  Google Scholar 

  22. L. Zhu, D. Shen, K.H. Luo, J. Hazard. Mater. 389, 122102 (2020)

    CAS  PubMed  Google Scholar 

  23. J. Zhang, G. Wang, W. Wang et al., Res. Chem. Intermed. 42, 6003 (2016)

    CAS  Google Scholar 

  24. A.T. Khadim, T.M. Albayati, N.M.C. Saady, Micropor. Mesopor. Mater. 341, 112020 (2022)

    CAS  Google Scholar 

  25. Y.A.A. Al-Khodor, T.M. Albayati, Chem. Africa 6, 747 (2023)

    CAS  Google Scholar 

  26. F.T. Ng, A. Rahman, T. Ohasi et al., Appl. Catal. B. 56, 127 (2005)

    CAS  Google Scholar 

  27. H. Li, L. Dong, L. Zhao et al., Ind. Eng. Chem. Res. 56, 3813 (2017)

    CAS  Google Scholar 

  28. J. Přech, Catal Rev Sci Eng. 60, 71 (2018)

    Google Scholar 

  29. K.X. Lee, J.A. Valla, React. Chem. Eng. 4, 1357 (2019)

    CAS  Google Scholar 

  30. N.R. Yeole, Environ. Prog. Sustain. 42, 13960 (2023)

    Google Scholar 

  31. R. Dehghan, M. Anbia, Fuel Process. Technol. 167, 99 (2017)

    CAS  Google Scholar 

  32. X. Han, H. Li, H. Huang et al., RSC Adv. 6, 75006 (2016)

    CAS  Google Scholar 

  33. L.L. Mguni, A. Ndhlovu, X. Liu et al., Energy Fuel. 36, 4427 (2022)

    CAS  Google Scholar 

  34. S.M. Opalka, T. Zhu, Micropor. Mesopor. Mater. 222, 256 (2016)

    CAS  Google Scholar 

  35. S. Yang, L. Chen, C. Wang et al., J. Colloid Interface Sci. 508, 254 (2017)

    CAS  PubMed  Google Scholar 

  36. P. Salehikahrizsangi, K. Raeissi, F. Karimzadeh et al., Appl. Surf. Sci. 520, 146319 (2020)

    CAS  Google Scholar 

  37. N.A. Atiyah, T.M. Albayati, M.A. Atiya, Adv. Powder Technol. 33, 103417 (2022)

    CAS  Google Scholar 

  38. J. O’Brien-Abraham, Y.S. Lin, Ind. Eng. Chem. Res. 49, 809 (2010)

    Google Scholar 

  39. Y. Garcia-Basabe, I. Rodriguez-Iznaga, L.-C. de Menorval et al., Micropor. Mesopor. Mater. 135, 187 (2010)

    CAS  Google Scholar 

  40. K. Möller, T. Bein, Chem. Soc. Rev. 42, 3689 (2013)

    PubMed  Google Scholar 

  41. H.-Y. Sun, L.-P. Sun, F. Li et al., Fuel Process. Technol. 134, 284 (2015)

    CAS  Google Scholar 

  42. M. Dadashi, G. Mazloom, A. Akbari et al., Environ. Sci. Pollut. Res. 27, 30600 (2020)

    CAS  Google Scholar 

  43. K.X. Lee, J.A. Valla, Appl. Catal. B. 201, 359 (2017)

    CAS  Google Scholar 

  44. R.T. Yang, A.J. Hernández-Maldonado, F.H. Yang, Sci. 301, 79 (2003)

    CAS  Google Scholar 

  45. R. Barzamini, C. Falamaki, R. Mahmoudi, Fuel 130, 46 (2014)

    CAS  Google Scholar 

  46. J. Jiang, F.T. Ng, Adsorp. 16, 549 (2010)

    CAS  Google Scholar 

  47. A. Ryzhikov, V. Hulea, D. Tichit et al., Appl. Catal. A. 397, 218 (2011)

    CAS  Google Scholar 

  48. J.K. Thomas, K. Gunda, P. Rehbein et al., Appl. Catal. B. 94, 225 (2010)

    CAS  Google Scholar 

  49. H. Song, G. Yang, H. Song et al., Taiwan Inst. Chem. Eng. 63, 125 (2016)

    CAS  Google Scholar 

  50. G. Dashtpeyma, S.R. Shabanian, J. Ahmadpour et al., Chem. Eng. Res. Des. 178, 523 (2022)

    CAS  Google Scholar 

  51. G. Dashtpeyma, S.R. Shabanian, J. Ahmadpour et al., Fuel Process. Technol. 235, 107379 (2022)

    CAS  Google Scholar 

  52. B. Saha, S. Vedachalam, A.K. Dalai, Fuel Process. Technol. 214, 106685 (2021)

    CAS  Google Scholar 

  53. R. Mahmoudi, C. Falamaki, Fuel 173, 277 (2016)

    CAS  Google Scholar 

  54. E.B. Ateş, Turk. Chem. Soc. Sect. 5, 39 (2022)

    Google Scholar 

  55. M. Moradi, R. Karimzadeh, E.S. Moosavi, Fuel 217, 467 (2018)

    CAS  Google Scholar 

  56. K. Elaiopoulos, T. Perraki, E. Grigoropoulou, Micropor. Mesopor. Mater. 134, 29 (2010)

    CAS  Google Scholar 

  57. M. Kragović, A. Daković, M. Marković et al., Appl. Surf. Sci. 283, 764 (2013)

    Google Scholar 

  58. R.A. Omar, N. Verma, Ind. Eng. Chem. Res. 61, 8595 (2022)

    CAS  Google Scholar 

  59. K.X. Lee, H. Wang, S. Karakalos et al., Ind. Eng. Chem. Res. 58, 1830 (2019)

    Google Scholar 

  60. S. Dasgupta, P. Gupta, A. Nanoti et al., Fuel 108, 184 (2013)

    CAS  Google Scholar 

  61. D. Yi, H. Huang, X. Meng et al., Appl. Catal. B. 148, 386 (2014)

    Google Scholar 

  62. D. Verboekend, T.C. Keller, M. Milina et al., Mater. Chem. 25, 1947 (2013)

    CAS  Google Scholar 

  63. S.T. Kadhum, G.Y. Alkindi, T.M. Albayati, Int. J. Environ. Sci. Tech. 19, 1383 (2022)

    CAS  Google Scholar 

  64. F. Tian, Q. Shen, Z. Fu et al., Fuel Process. Technol. 128, 176 (2014)

    CAS  Google Scholar 

  65. J. Ahmadpour, M. Taghizadeh, J. Nat. Gas Sci. Eng. 23, 184 (2015)

    CAS  Google Scholar 

  66. N.A. Atiyah, T.M. Albayati, M.A. Atiya, J. Mol. Struct. 1260, 132879 (2022)

    CAS  Google Scholar 

  67. J. Ahmadpour, M. Taghizadeh, C R Chim. 18, 834 (2015)

    CAS  Google Scholar 

  68. G. Coudurier, J. Vedrine, Stud. Surf. Sci. Catal. 28, 643 (1986)

    CAS  Google Scholar 

  69. G. Martins, G. Berlier, C. Bisio et al., Phys. Chem. C. 112, 7193 (2008)

    CAS  Google Scholar 

  70. A.T. Khadim, T.M. Albayati, N.M.C. Saady, Environ. Nanotechnol. Monit. Manag. 17, 100635 (2022)

    CAS  Google Scholar 

  71. P. Kaur, H.K. Chopra, Fuel Process. Technol. 238, 107480 (2022)

    CAS  Google Scholar 

  72. S. Achmann, G. Hagen, M. Hämmerle et al., Chem. Eng. Technol. 33, 275 (2010)

    CAS  Google Scholar 

  73. K. Sarda, A. Bhandari, K. Pant et al., Fuel 93, 91 (2012)

    Google Scholar 

  74. D. Jha, M.B. Haider, R. Kumar et al., Chem. Eng. Data. 65, 2120 (2020)

    CAS  Google Scholar 

  75. Y. Lu, R. Wang, Y. Nan et al., RSC Adv. 7, 51528 (2017)

    CAS  Google Scholar 

Download references

Funding

The authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant Program No. BNUT/388003/98.

Author information

Authors and Affiliations

Authors

Contributions

ZM: Conceptualization, Methodology, Writing—original draft. SRS: Supervision, Methodology, investigation, Conceptualization, Writing—review & editing. JA: Supervision, Data curation, Validation. MG: Investigation, Data curation. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Seyed Reza Shabanian.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghsoudi, Z., Shabanian, S.R., Ahmadpour, J. et al. Enhanced adsorption desulfurization performance over modified zeolite clinoptilolite for a model fuel in a competitive process. Res Chem Intermed 49, 3097–3133 (2023). https://doi.org/10.1007/s11164-023-05039-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05039-x

Keywords

Navigation