Skip to main content
Log in

Preparation and SO2 capture performance of NCP10/LiOH carbon-based composite for deep desulfurization

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Carbon materials mainly capture sulfur dioxide (SO2) from gas through physical adsorption, therefore their SO2 capture performance will decrease with the increase in desulfurization temperature. In order to meet the stringent requirements of deep desulfurization, further improvements on carbon materials are necessary, improving their SO2 capture performance and adaptability to changes in desulfurization temperature. In this study, a carbon material (NCP10) was modified with various alkali metal compounds with the aim of enhancing the SO2 capture performance and adaptability to temperature changes. The results showed that the NCP10/LiOH composite had the best average SO2 removal rate (100%) and SO2 capture capacity (\({113}.{6} \;{\text{mg}}_{{{\text{SO}}_{2} }} /{\text{g}}_{{{\text{material}}}}\)) within the first hour of reacting at 60 °C, the SO2 removal rate and SO2 capture capacity of the NCP10/LiOH composite were 29% and 29% higher than those of the pure NCP10 material, respectively. While the SO2 capture performance of the NCP10 modified with LiCl, Li2CO3, NaOH and KOH were not sufficient for deep desulfurization, the SO2 capture performance of the NCP10/LiOH(2:1) composite was able to meet the requirements of deep desulfurization in the temperature range of 25–100 °C by the physical adsorption and chemical absorption synergistically effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and materials

In addition to the data and materials already in the manuscript, there are no additional data and materials in this manuscript.

References

  1. H. Sharif, S.A. AbdulAmeer, B.S. Bashar, S.H. Talib, S.A. Khalaf, S.K. Hadrawi, M. Vajaf, Mater. Sci. Eng. B. 288, 116192 (2023)

    Article  CAS  Google Scholar 

  2. X. Peng, H.H. Yi, X.L. Tang, K. Li, Res. Chem. Intermed. 41, 213 (2015)

    Article  CAS  Google Scholar 

  3. C.V. Thriel, M. Schäper, S. Kleinbeck, E. Kiesswetter, M. Blaszkewicz, K. Golka, E. Nies, M. Raulf-Heimsoth, T. Brüning, Toxicol. Lett. 196, 42 (2010)

    Article  PubMed  Google Scholar 

  4. A. Shokri, F. Rabiee, K. Mahanpoor, Int. J. Environ. Sci. Technol. 14, 2485 (2017)

    Article  CAS  Google Scholar 

  5. J.C. Bao, K. Li, P. Ning, C. Wang, X. Song, Y.S. Luo, X. Sun, J. Environ. Sci. 108, 33 (2021)

    Article  CAS  Google Scholar 

  6. N.H. Koralegedara, P.X. Pinto, D.D. Dionysiou, S.R. Al-Abed, J. Environ. Manage. 251, 109572 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. X. Kang, X.X. Ma, J.A. Yin, X.C. Gao, Chin. J. Chem. Eng. 26, 1536 (2018)

    Article  CAS  Google Scholar 

  8. Y.Q. Zhao, J.X. Dou, A.R. Wei, S. Khoshkrish, J.L. Yu, J. Mol. Liq. 340, 117228 (2021)

    Article  CAS  Google Scholar 

  9. M. Naghavi, G. Mazloom, A. Akbari, F. Banisharif, Chem. Eng. Res. Des. 174, 454 (2021)

    Article  CAS  Google Scholar 

  10. Y. Mathieu, L. Tzanis, M. Soulard, J. Patarin, M. Vierling, M. Molière, Fuel Process. Technol. 114, 81 (2013)

    Article  CAS  Google Scholar 

  11. X. Li, T. Huhe, T. Zeng, X. Ling, Z.P. Wang, H.Y. Huang, Y. Chen, Heliyon 8, 11463 (2022)

    Article  Google Scholar 

  12. M.A. Abedi, S. Abbasizadeh, R. Karimzadeh, Res. Chem. Intermed. 47, 497 (2021)

    Article  CAS  Google Scholar 

  13. B. Saha, S. Vedachalam, A.K. Dalai, Fuel Process. Technol. 214, 106685 (2021)

    Article  CAS  Google Scholar 

  14. X.H. Wang, H.R. Cheng, G.Z. Ye, J. Fan, F. Yao, Y.Q. Wang, Y.J. Jiao, W.F. Zhu, H.M. Huang, D.Q. Ye, Chemosphere 287, 131995 (2022)

    Article  CAS  PubMed  Google Scholar 

  15. B.C. Bai, C.W. Lee, Y.S. Lee, J.S. Im, Mater. Chem. Phys. 200, 361 (2017)

    Article  CAS  Google Scholar 

  16. R. Zafari, F.G. Mendonça, R.T. Baker, C. Fauteux-Lefebvre, Sep. Purif. Technol. 308, 122917 (2023)

    Article  CAS  Google Scholar 

  17. A.A. Abdulrasheed, A.A. Jali, S. Triwahyono, M.A.A. Zaini, Y. Gambo, M. Ibrahim, Renew. Sust. Energ. Rev. 94, 1067 (2018)

    Article  CAS  Google Scholar 

  18. X. Li, L.T. Chen, Y. Osaka, Z.H. He, L.D. Deng, H.Y. Huang, Sep. Purif. Technol. 253, 117182 (2020)

    Article  CAS  Google Scholar 

  19. T. Ge, C.C. Cai, F.F. Min, M.X. Zhang, Fuel 301, 121089 (2021)

    Article  CAS  Google Scholar 

  20. K.J. He, Z.Z. Tang, Q. Song, Q. Yao, Chem. Eng. Sci. 247, 117054 (2022)

    Article  CAS  Google Scholar 

  21. J.J. Pei, Y.J. Pan, Q. Wu, J. Clean. Prod. 382, 135400 (2023)

    Article  CAS  Google Scholar 

  22. J. Li, G.F. Chen, J.C. Chang, L.Q. Zhang, T. Wang, Z.L. Song, C.Y. Ma, J. Energy Inst. 102, 118 (2022)

    Article  CAS  Google Scholar 

  23. Y. Osaka, S. Kurahara, N. Kobayashi, M. Hasatani, A. Matsuyama, Heat Transfer Eng. 36, 325 (2015)

    Article  CAS  Google Scholar 

  24. W.J. Wang, L.L. Fan, G.P. Wang, Y.H. Li, Appl. Surf. Sci. 425, 972 (2017)

    Article  CAS  Google Scholar 

  25. X.C. Liu, L.T. Chen, G.X. Qi, Chem. Eng. Technol. 41, 1675 (2018)

    Article  CAS  Google Scholar 

  26. X. Li, Y. Osaka, H.Y. Huang, T. Tsujiguchi, A. Kodama, J. Renew. Mater. 9, 1541 (2021)

    Article  CAS  Google Scholar 

  27. J.J. Zhang, L. Wang, H. Song, H.L. Song, Res. Chem. Intermed. 41, 6087 (2015)

    Article  CAS  Google Scholar 

  28. Z.Y. Zhou, L. Mei, C. Ma, F. Xu, J. Xiao, Q.B. Xia, Z. Li, Chem. Eng. Sci. 147, 109 (2016)

    Article  CAS  Google Scholar 

  29. F. Sun, J.H. Gao, X. Liu, Y.Q. Yang, S.H. Wu, Chem. Eng. J. 290, 116 (2016)

    Article  CAS  Google Scholar 

  30. S.J. Li, H.Y. Huang, X.X. Yang, Y. Bai, J. Li, N. Kobayashi, M. Kubota, Appl. Therm. Eng. 128, 706 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Open Fund of Science and Technology on Thermal Energy and Power Laboratory (TPL2020A02), and the Key-Area Research and Development Program of Guangdong Province (2020B0202010004).

Funding

This work was financially supported by the Open Fund of Science and Technology on Thermal Energy and Power Laboratory (TPL2020A02), and the Key-Area Research and Development Program of Guangdong Province (2020B0202010004).

Author information

Authors and Affiliations

Authors

Contributions

XL contributed to ideas, formulation and evolution of overarching research goals and aims, performed the data analyses and wrote the manuscript. TH helped perform the analysis with constructive discussions. TZ performed the experiment. XL analyzed and synthesize studied data. HH contributed to preparation, creation and presentation of the published work, and review, commentary and revision including pre- or post-publication stages. YC helped perform the analysis with constructive discussions.

Corresponding author

Correspondence to Hongyu Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The authors declare there are no both human and/ or animal studies in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huhe, T., Zeng, T. et al. Preparation and SO2 capture performance of NCP10/LiOH carbon-based composite for deep desulfurization. Res Chem Intermed 49, 3605–3626 (2023). https://doi.org/10.1007/s11164-023-05036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-05036-0

Keywords

Navigation